Unified Modelling Language

Phil Robinson

Lonsdale Systems www.iinet.net.au/~lonsdale

What i1s the UML?

* A language that unifies the
Industry’s best engineering
practices for modelling software

systems

e Goals
 Simple and extensible
 Broad application
 Implementation independent
 Process independent

Lonsdale Systems www.iinet.net.au/~lonsdale

The Evolution of the UML

Introducing the ‘Three Amigos’

Lonsdale Systems www.iinet.net.au/~lonsdale

Mid 70’s - Mid 90’s

« Competing object oriented methods

« Booch
e OMT (Rumbaugh)
« OOSE (Jacobson)
e Others

Lonsdale Systems www.iinet.net.au/~lonsdale

1995

 Unified Method

e Booch
« Rumbaugh

Lonsdale Systems www.iinet.net.au/~lonsdale

1996

Booch and Rumbaugh are joined by
Jacobson

They become the ‘Three Amigos’

‘Unified Method’ becomes ‘Unified
Modelling Language’

The ‘UML Partners’ begin working
with the ‘Amigos’

Lonsdale Systems www.iinet.net.au/~lonsdale

1997

« UML 1.0 proposal submitted to the
Object Management Group (OMG)

« UML 1.1 Adopted as an OMG
standard

Lonsdale Systems www.iinet.net.au/~lonsdale

UML Since Adoption

1998

1999
20007

20017

Lonsdale Systems

U M L 1 . 2 (editorial clean up)

U M L 1 . 3 (technical revision)

UML 14 (planned minor revision)
International standard so)

U M L 2 . O (planned major revision)

www.iinet.net.au/~lonsdale

Object Oriented Software

Lonsdale Systems www.iinet.net.au/~lonsdale

Hardware Architecture

 Unchanged since
MEMORY 1950’s

e Separation of data
I and logic

e Strong influence on
software development

Lonsdale Systems www.iinet.net.au/~lonsdale

Conventional Software

= bal ance + anount:

Lonsdale Systems www.iinet.net.au/~lonsdale

Object Oriented Software

open account

deposit

withdraw

return balance

close account

ACCOUNT

account no
name
balance

Lonsdale Systems

‘Object Classes’
reflect the problem

domain (rather than the
hardware architecture)

Information hiding
‘Normalisation’ of
logic

Easier to reuse

www.iinet.net.au/~lonsdale

Development is Different
e Object Oriented

e Conventional

e Separate data and
function models

Decomposition
guides modelling

Paradigm changes
throughout the
development life-
cycle

Danger of ‘logical
spaghetti’

Lonsdale Systems

Single object
model with many
‘Views’
Abstraction guides
modelling

Consistent
paradigm
throughout the
development life-
cycle

Danger of ‘logical
ravioll’

www.iinet.net.au/~lonsdale

External System Behaviour

e Externally visible behaviour
o User’s perspective
 ‘Black box’ view

Lonsdale Systems www.iinet.net.au/~lonsdale

System Structure

e Classes
e |Instances
 Relationships

Lonsdale Systems www.iinet.net.au/~lonsdale

Internal System Behaviour

*—o

Lonsdale Systems

Collaborations

ODbject instances
Messages

Developer’s perspective
‘Glass box’ view

www.iinet.net.au/~lonsdale

Internal Object Behaviour

 Behaviour
 Operations

- e Methods
e State

o Attributes

Lonsdale Systems www.iinet.net.au/~lonsdale

UML Diagrams

Class/ODbject Diagrams (system structure)

Use Case Diagrams external system behaviour)
Seguence Diagrams (nternal system behaviour)
Statechart Diagrams (nternal object behaviour)

Lonsdale Systems www.iinet.net.au/~lonsdale

Class/Object Diagrams

System Structure

Lonsdale Systems www.iinet.net.au/~lonsdale

Classes

Transaction SavingsAccount
itemNumber accountNo

transactionType name

date /balance
amount rate

openAccount(accountNo,name)
deposit(amount,date)
withdraw(amount,date)
balance()

close()

Lonsdale Systems www.iinet.net.au/~lonsdale

Objects

Jones:SavingsAccount Abbot:SavingsAccount Smith:SavingsAccount

:SavingsAccount

Lonsdale Systems www.iinet.net.au/~lonsdale

Relationships

Transaction Account
itemNumber account_no

transactionType name
date /balance

amount

open_account(accountNo.name)
new(type.amount,date) deposit(amount,date)

returnAmount() withdraw(amount,date)
updateBalance(amount)
interestCalc()
returnBalance()
closeAccount()

SavingsAccount LoanAccount
rate rate

interestCalc() interestCalc()

Housingloan CreditCard

openAccount(name) interestCalc()

withdraw(amount,date)

Lonsdale Systems www.iinet.net.au/~lonsdale

Use Case Diagrams

External System Behaviour

Lonsdale Systems www.iinet.net.au/~lonsdale

Use Case Components

AcCtors

Use case
e Basic scenario
e Alternate scenarios

Extends
Includes

Lonsdale Systems www.iinet.net.au/~lonsdale

Use Case Diagram

Withdraw
Account

Overdrawn

extension points <<extends>>---—

account overdraw

Deposit

Teller

Update Balance

Open Account

Customer
Service
Representative

Close Account

Calculate
Interest

Mont End
<<temporal>>

Lonsdale Systems www.iinet.net.au/~lonsdale

Seqguence Diagrams

Internal System Behaviour

Lonsdale Systems www.iinet.net.au/~lonsdale

Sequence Components

Objects
Life lines
Activations
Messages

Lonsdale Systems www.iinet.net.au/~lonsdale

Sequence Diagram

:Loan Account

bal:=withdraw(amount, date)

L

tr:=new(type, amount, date) _
p tr:Transaction

.

update balance(-amount)

Lonsdale Systems www.iinet.net.au/~lonsdale

Statechart Diagrams

Internal Object Behaviour

Lonsdale Systems www.iinet.net.au/~lonsdale

Statechart Components

e States
e Transitions
e Events

Lonsdale Systems www.iinet.net.au/~lonsdale

Statechart Diagram

Accounts with a
zero balance are
considered to be in
credit

Deposit Deposit [amount+balance<0]

| L

Withdraw [amount>balance]

1) (2) W
Open Account (Bad Debt
o D Account in Account

Credit Overdrawn J
Deposit [amount+balance>=0] \

©)

Close Account [balance=0]

Withdraw [amount<=balance]

Lonsdale Systems www.iinet.net.au/~lonsdale

But there’s more...

Lonsdale Systems www.iinet.net.au/~lonsdale

Modelling Elements

Collaboration diagrams

Activity diagrams

Interfaces

Packages

Realise relationship

Dependency relationship

Object Constraint Language (OCL)
Extension mechanisms

Lonsdale Systems www.iinet.net.au/~lonsdale

Implementation

 Deployment
 Nodes
e Connections
e Components

 Repository based development
 ‘Round trip’ development tools

Lonsdale Systems www.iinet.net.au/~lonsdale

Process

« UML describes software
development ‘artefacts’
 The ‘Unified Software Development

Process’

e Use case driven

e Architecture centric

e |[terative and incremental

e UML can be used with other
processes

Lonsdale Systems www.iinet.net.au/~lonsdale

Unified Modelling Language

Phil Robinson

Lonsdale Systems www.iinet.net.au/~lonsdale

