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What i1s the UML?

* A language that unifies the
Industry’s best engineering
practices for modelling software

systems

e Goals
 Simple and extensible
 Broad application
 Implementation independent
 Process independent
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The Evolution of the UML

Introducing the ‘Three Amigos’
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Mid 70’s - Mid 90’s

« Competing object oriented methods

« Booch
e OMT (Rumbaugh)
« OOSE (Jacobson)
e Others
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1995

 Unified Method

e Booch
« Rumbaugh
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1996

Booch and Rumbaugh are joined by
Jacobson

They become the ‘Three Amigos’

‘Unified Method’ becomes ‘Unified
Modelling Language’

The ‘UML Partners’ begin working
with the ‘Amigos’
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1997

« UML 1.0 proposal submitted to the
Object Management Group (OMG)

« UML 1.1 Adopted as an OMG
standard
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UML Since Adoption

1998

1999
20007

20017

Lonsdale Systems

U M L 1 . 2 (editorial clean up)

U M L 1 . 3 (technical revision)

UML 14 (planned minor revision)
International standard so)

U M L 2 . O (planned major revision)
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Object Oriented Software
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Hardware Architecture

 Unchanged since
MEMORY 1950’s

e Separation of data
I and logic

e Strong influence on
software development
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Conventional Software

= bal ance + anount:
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Object Oriented Software

open account

deposit

withdraw

return balance

close account

ACCOUNT

account no
name
balance
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‘Object Classes’
reflect the problem

domain (rather than the
hardware architecture)

Information hiding
‘Normalisation’ of
logic

Easier to reuse
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Development is Different
e Object Oriented

e Conventional

e Separate data and
function models

Decomposition
guides modelling

Paradigm changes
throughout the
development life-
cycle

Danger of ‘logical
spaghetti’
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Single object
model with many
‘Views’
Abstraction guides
modelling

Consistent
paradigm
throughout the
development life-
cycle

Danger of ‘logical
ravioll’
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External System Behaviour

e Externally visible behaviour
o User’s perspective
 ‘Black box’ view

Lonsdale Systems www.iinet.net.au/~lonsdale




System Structure

e Classes
e |Instances
 Relationships
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Internal System Behaviour

*—o

Lonsdale Systems

Collaborations

ODbject instances
Messages

Developer’s perspective
‘Glass box’ view
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Internal Object Behaviour

 Behaviour
 Operations

- e Methods
e State

o Attributes
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UML Diagrams

Class/ODbject Diagrams (system structure)

Use Case Diagrams external system behaviour)
Seguence Diagrams (nternal system behaviour)
Statechart Diagrams (nternal object behaviour)
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Class/Object Diagrams

System Structure
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Classes

Transaction SavingsAccount
itemNumber accountNo

transactionType name

date /balance
amount rate

openAccount(accountNo,name)
deposit(amount,date)
withdraw(amount,date)
balance()

close()

Lonsdale Systems www.iinet.net.au/~lonsdale




Objects

Jones:SavingsAccount Abbot:SavingsAccount Smith:SavingsAccount

:SavingsAccount
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Relationships

Transaction Account
itemNumber account_no

transactionType name
date /balance

amount

open_account(accountNo.name)
new(type.amount,date) deposit(amount,date)

returnAmount() withdraw(amount,date)
updateBalance(amount)
interestCalc()
returnBalance()
closeAccount()

SavingsAccount LoanAccount
rate rate

interestCalc() interestCalc()

Housingloan CreditCard

openAccount(name) interestCalc()

withdraw(amount,date)
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Use Case Diagrams

External System Behaviour

Lonsdale Systems www.iinet.net.au/~lonsdale




Use Case Components

AcCtors

Use case
e Basic scenario
e Alternate scenarios

Extends
Includes
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Use Case Diagram

Withdraw
Account

Overdrawn

extension points <<extends>>---—

account overdraw

Deposit

Teller

Update Balance

Open Account

Customer
Service
Representative

Close Account

Calculate
Interest

Mont End
<<temporal>>
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Seqguence Diagrams

Internal System Behaviour
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Sequence Components

Objects
Life lines
Activations
Messages
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Sequence Diagram

:Loan Account

bal:=withdraw(amount, date)

L

tr:=new(type, amount, date) _
p tr:Transaction

.

update balance(-amount)
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Statechart Diagrams

Internal Object Behaviour
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Statechart Components

e States
e Transitions
e Events
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Statechart Diagram

Accounts with a
zero balance are
considered to be in
credit

Deposit Deposit [amount+balance<0]

| L

Withdraw [amount>balance]

1) (2) W
Open Account ( Bad Debt
o D Account in Account

Credit Overdrawn J
Deposit [amount+balance>=0] \

©)

Close Account [balance=0]

Withdraw [amount<=balance]
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But there’s more...
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Modelling Elements

Collaboration diagrams

Activity diagrams

Interfaces

Packages

Realise relationship

Dependency relationship

Object Constraint Language (OCL)
Extension mechanisms
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Implementation

 Deployment
 Nodes
e Connections
e Components

 Repository based development
 ‘Round trip’ development tools
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Process

« UML describes software
development ‘artefacts’
 The ‘Unified Software Development

Process’

e Use case driven

e Architecture centric

e |[terative and incremental

e UML can be used with other
processes
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