
“Entity Beans” Table Interfaces 
or Software Components? 

Phil Robinson 
E-mail: lonsdale@iinet.net.au 

Abstract 

This paper briefly describes the J2EE platform.  It then goes on to explore 
the potential “clash of cultures” between object oriented and information 
systems developers embodied in the J2EE platform.  It is noted that that 
conflict can result when both groups believe that they have the “only valid 
view”.   In fact, the conflict is unnecessary because both groups have the 
correct view.  The problem is that neither the object oriented or 
information systems perspective provides the full picture. 

The danger inherent in such a conflict is that information systems 
developers will try to use database designs as the basis for software 
component designs.  Conversely, object oriented developers will try to use 
software component designs as the basis for database designs.  The paper 
argues that conceptual models are required to aid communication between 
the two groups of developers and to provide a shared understanding of the 
problem domain.  Conceptual models provide a good basis for both 
database and software component designs.  The ideas are illustrated using 
a simple example. 

A Brief Tour of J2EE Technology 

When Java was first introduced to the world, it was promoted as the 
means to dress up web pages with dynamic content.  Over time, interest in 
using Java to develop browser-based applets waned but Java has not 
faded away.  Instead, it has been “re-invented” as a server-side 
programming language.  The release of the Java 2 Enterprise Edition 
(J2EE) platform firmly established Java as a force in the information 
systems arena. 

J2EE is built on top of the standard Java 2 platform.  It consists of a set of 
specifications, application programming interfaces (APIs), and protocols 
intended to assist with the development of n-tiered, web-based 



applications.  The centre piece of J2EE is the Enterprise Java Bean (EJB) 
component model.  EJBs are server-side components that are executed 
inside a “container” [1]. 

Client RMIClient RMI

Application Server

J
N
D
I

Browser

Web Server

Browser

Web Server

JSPs

Servlets

Database

J
D
B
C

Database

J
D
B
C

EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

EJB

Legacy 
System

J
M
S

Legacy 
System

J
M
S

 

Figure 1: The J2EE Platform 

EJB containers are normally implemented as one of the services provided 
by an application server.  A typical application server supports web-based 
applications, via a web-server and can communicate directly with Java 
clients using the Remote Method Invocation (RMI) protocol.  Databases 
can be accessed using the Java Database Connectivity  (JDBC) API or 
native database drivers.  The Java Messaging Service (JMS) provides a 
means to communicate with non-Java legacy applications. 

Java Server Pages (JSP) 

JSPs provide a mechanism for web page designers to create dynamic web 
content by writing a relatively small amount of Java code.  JSPs remove 
the need for tedious hand-coding of HTML pages using lots of Java print 
statements.  A JSP consists of HTML code interspersed with Java 
statements.  When the page is requested by a client, the server executes 
the Java code and returns the generated HTML pages to the client. 

Servlets 

A Java servlet is a small Java program that extends the functionality of a 
web server in much the same way that an applet extends the functionality 
of a web browser.  Servlets are automatically executed whenever a 
browser requests the URL associated with the servlet.  Servlets and CGI 
scripts serve the same purpose but servelets have a major advantage.  CGI 
scripts are executed in dedicated server processes.  In contrast, servlets 
are executed as a separate thread within the web server.  This means that 
servlets offer much greater scalability than CGI scripts. 

Java Naming and Directory Interface (JNDI) 

As its name suggests, the JNDI API is used to access naming and 
directory services.  It provides a consistent model for accessing and using 



resources such as DNS, LDAP, local file systems and application server 
objects.  JNDI is intended to facilitate the portability of applications. 

Enterprise Java Beans (EJBs) 

EJBs are components which are executed inside a “container”.  EJBs 
provide a framework for developing and deploying distributed business 
logic.  The J2EE specification defines how an EJB should interact with its 
container.  The container provides generic services such as security, 
transaction management, resource pooling and fault tolerance.  EJBs 
implement the business logic of the application.  This approach frees the 
application developers from concerns such as transaction management 
and security, allowing them to concentrate on developing just the logic 
related to the problem domain. 

The J2EE specification defines three categories of EJB: 

• Stateless Session Bean.  This type of EJB can provide services to 
multiple clients.  Stateless Session Beans are volatile and do not 
survive container crashes.  A currency conversion service is a 
typical example of how a Stateless Session Bean might be used. 

• Stateful Session Bean.  This type of EJB maintains the state of a 
single client.  Stateful Session Beans are also volatile and do not 
survive container crashes.  A shopping cart is a typical example of 
how a Stateful Session Bean might be used. 

• Entity Bean.  This type of EJB stores the state of a business object.  
Entity Beans are non-volatile and will survives container crashes.  
A customer account is a typical example of how an Entity EJB 
might be used. 

Application Server

Client

Client

Client

Client

Client

Session
Bean

(stateless)

Client

Session
Bean

(stateless)

Entity
Bean
Entity
Bean

Entity
Bean
Entity
Bean

Entity
Bean
Entity
Bean

Database

Client

Client
Session

Bean
(stateful)

Session
Bean

(stateful)
Client

Client
Session

Bean
(stateful)

Session
Bean

(stateful)

Entity
Bean
Entity
Bean

 

Figure 2: Relationships Between EJB Instances 



Figure 2 illustrates the relationships between Session Beans, Entity 
Beans and the clients that use them.  As the diagram shows, Stateless 
Sessions Beans can be used by a number of clients.  The clients use the 
Session Bean on a message by message basis.  In contrast, Stateful 
Session Beans can only be used by a single client during a session.  Both 
types of Session Bean can make references to multiple Entity Beans.  
Conversely, each unique instance of an Entity Bean has the potential to be 
referenced by more than one Session Bean. 

Out of necessity, this has been a brief introduction to the J2EE platform.  
A  more in-depth discussion is beyond the scope of this paper.  However, 
there is a wealth of information about the J2EE platform available at Sun 
Microsystems web site [2].  For a more detailed but concise overview see 
[3]. 

J2EE and People 

From a people-perspective, it can be argued that the J2EE platform 
represents a “clash of cultures”.  The Java platform has evolved from the 
world of software engineering and object oriented programming.  
Originally, Java was designed as a means to develop software to be 
embedded in hardware systems.  One of the goals of Java’s designers was 
to improve on the object oriented programming language C++. 

The J2EE platform on the other hand is clearly targeted at the developers 
of information systems.  Traditionally, this group has not used object 
oriented programming languages to develop applications. 

These two tribes of developers frequently have very different perspectives 
of the software development process.  They employ different techniques, 
have different skill sets and different traditions.  Some observers have 
named this clash of cultures the “object-data divide” [4]. 

The Object Oriented Perspective 

At times, there is so much hype surrounding object oriented programming 
(OOP) that it is easy to forget how it started.  OOP was originally 
developed as an alternative to the traditional programming model.  The 
traditional model is based on the underlying computer hardware that 
executes a program.  The hardware architecture’s rigid separation of 
storage and processing functions are reflected in the separation of data 
and logic in a program.g 

The separation of data and logic means that programming problems must 
be decomposed into separate “data” and “logic” elements before they can be 



solved.  While this now seems quite natural for many software developers, 
there are some categories of problem that can be very difficult to solve 
using this approach. 

OOP officially started in Norway in 1967 with the development of the 
Simula language [5].  Simula is a simulation language designed for 
writing software simulations of the real-world.  Simulations are one of the 
classes of problem that can be very difficult to solve using the traditional 
approach. 

Storage

Processor

Data

Logic

Traditional
Approach

Storage

Processor

Data

Logic

Traditional
Approach

                          

Object

Object Oriented
Approach

Data

Logic

Object

Object Oriented
Approach

Data

Logic
 

Figure 3: The Traditional Programming and Object Oriented Programming Models 

Simula introduced a new programming model based on software “objects” 
rather than the underlying computer hardware.  Simula’s software objects 
could easily be configured to mimic the various components of whatever 
was being simulated.  Simula’s objects also employed the principle of 
“encapsulation” to hide an object’s data values from the outside world.  
Only logic which forms part of the object may change the values of its 
“private” data. 

Smalltalk, developed in the 1970’s, was actually the first language to be 
called “object oriented”.  Smalltalk built on the approach pioneered by 
Simula.  Although other object oriented languages, such as C++, followed 
Smalltalk during the 1980’s, OOP did not really become “mainstream” 
until the early 1990’s. 

Database
“Back End”
Database

“Back End”

Object Oriented 
Software Design  

Figure 4: Object Oriented Software Design 



An object oriented software design consists of a number of related object 
classes which “collaborate” to deliver the required application 
functionality.  From the perspective of an object oriented developer, the 
object oriented design is the center piece of the application.  Frequently, 
some of the classes in the design need to be “persistent classes”.  The data 
encapsulated inside a persistence class must survive system crashes and 
restarts.  In other words, persistent classes must be stored using some 
non-volatile storage medium such as a file or database. 

A few years ago, many object oriented developers believed that object 
oriented databases would eventually replace relational databases.  They 
looked forward to the time when object oriented programming languages 
combined with object oriented databases, would provide a seamless 
mechanism for making classes persistent.   However, object oriented 
databases have not grabbed the mind or market share that was originally 
hoped for by the object oriented community. 

This, coupled with the amount of legacy data already stored in relational 
databases, means that it is common for persistent classes to be stored in a 
relational database.  However, the attention of object oriented developers 
remains fixed on the object oriented software design with the result that 
they often regard the relational database as a relatively unimportant 
“back end” to their software. 

The Information Systems Perspective 

The history of information systems development is not as well charted as 
that of OOP.  Development of information systems has gone through a 
number of evolutionary stages starting in the “dark ages” with assembly 
language and punched cards.  As a rule, improvements in programming 
languages and data management techniques have taken place 
independently of each other.  Starting with assembly language, traditional 
programming languages have evolved through COBOL to Fourth 
Generation Languages (4GLs).  Starting with punched cards, data 
management has evolved through file systems, hierarchical and network 
databases finally arriving at relational databases. 

As a rule, the evolution of information systems has been opportunistic and 
driven by practitioners rather than academics.  In spite of this, theoretical 
foundations for the study of information systems have been proposed [6].  
One perspective that has appeal proposes that: 

information systems are used to represent the structure and 
behaviour of other systems.  They are intended to be the basis for 
coordinated action in some social system,  for example an 
organisation.  [7] 

To paraphrase this, an information system removes the requirement to 
directly observe what is happening in the real world.  Information systems 
achieve this by representing the states of things in the real world as tables 
stored in a database. 



Database

People

Things

Money
Activities

 

Figure 5: Information System Capture the State of the Real World 

From the perspective of an information systems developer, the database 
design is the center piece of an application.  The database is frequently 
seen as the “foundation” on which the application programs rest.  This 
view is reinforced by the fact that data requirements of an application, 
have a tendency to be more stable than the processing requirements.  
This, coupled with the independent evolution of programming languages 
and data management mentioned above, has meant that some information 
systems have undergone a number of incarnations.  Often, the underlying 
database has remained essentially unchanged, while the programs which 
access the data have been redeveloped.  The result is that information 
systems developers have a tendency to regard the programs that access a 
database as a an interchangeable “front end” to the database. 

Java
“Front End”

Java
“Front End”

Database 
Design  

Figure 6: Database Design 



Six Blind Men and an Elephant 

In isolation, the object oriented and information systems perspectives are 
perfectly valid and have served both communities well for a number of 
years.  However, problems can arise when the two groups are brought 
together.  If one group or the other starts to advocate that their 
perspective is the “only valid view” then conflict is bound to follow.  
Conflict of this nature is not unknown to the religions of the world and is 
aptly illustrated by this Jain story [8]. 

There were six blind men who lived in a village. One day, an 
elephant wandered into the village.  The blind men had never 
encountered an elephant before, so they decided to go and touch the 
elephant to see what it was like.  As they approached the elephant 
and touched it each man described his impressions. 

"An elephant is like a pillar," said the first man who touched a leg.  

"Oh, no! It is like a rope," said the second man who touched the tail.  

"More like a thick branch of a tree," said the third man who touched 
the trunk.  

"I would have said a large fan" insisted the fourth man who touched 
an ear.  

"No! No! A huge wall," said the fifth man who touched the belly.  

"I would say a pipe," Said the sixth man who touched a tusk.  

They began to argue about the elephant.  Each man insisted that he 
was right.  Fortunately, a wise man was passing by and he heard the 
disagreement.  The wise man stopped and asked them what they 
were arguing about.  "We cannot agree on what an elephant is like",  
they said.  Each man described his impression of the elephant.  The 
wise man laughed and explained that they were all correct. 

“The reason that you each describe the elephant differently, is 
because each of you  touched a different part of the elephant.  In fact, 
the elephant has all those features that you described." 

The Conceptual Model Perspective 

As far as the J2EE platform is concerned, placing too much emphasis on 
the software or database design is analogous to the blind men describing 
the elephant.  Neither view is incorrect but they both describe a single 
perspective of an application.  



Ironically, given the object oriented foundations of J2EE, we are dealing 
with the same separation of data and logic that prompted the development 
of Simula!  However, this time the separation is not so obvious because of 
the strong similarities between object oriented software models and 
database models. 

The problem is best illustrated by a simple example.  An object oriented 
software design for a bank might include an object class BankAccount 
which represents a customer’s bank account.  A database model might 
include a table BANK ACCOUNT which also represents a customer’s bank 
account.  Because the same abstraction is used for both the object class 
and the table it is easy to assume that the two are roughly equivalent.  
However, a careful comparison reveals that an object class and a database 
table are in fact, quite different things. 

The BANK ACCOUNT table has a row (instance) for every account opened by 
the bank.  If there are 100,000 accounts there will be 100,000 rows in the 
table.  As we have seen, rows in the BANK ACCOUNT table represent things 
in the real world and they must retain their values when the system 
crashes or is restarted.  If we exclude triggers and stored procedures, BANK 
ACCOUNT tables are passive and do not implement any business logic. 

In contrast, it is highly unlikely that there will be an instance of the 
BankAccount class for every account opened at the bank.  This is because 
swoftware objects are stored in main memory (as opposed to disk).  
Creating 100,000 instances of the BankAccount class would quickly 
saturate the available memory.   

In addition to this, software objects do not need to retain their state when 
the system crashes or is restarted.  Their state can simply be reloaded 
from the database.  Unlike tables, software objects are not passive.  Their 
methods implement the logic of the application. 

Once these fundamental differences are understood, it is easy to see that 
an object oriented software design is unlikely to provide a good basis for a 
database design.  As we shall see, the converse is also true, a database 
design does not provide a good basis for a software design based on EJBs. 

Software
Models

Database
Models  

Figure 7: Software and Database Models Are Not a Good Basis for  
Designing Each Other 

What is required is a model that provides the complete picture of an 
application.  Such a model needs to place equal emphasis on both the data 
and processing requirements of the application.  Such a model is 
frequently referred to as a “conceptual model”. 

Conceptual models are based on the same sort of abstraction as software 
and database models but with a number of important differences: 



• “Object types” rather than software classes or database tables are 
used to represent problem domain concepts. 

• In contrast to database tables, object types are not passive.  They 
can represent the behaviour of something in the real-world. 

• In contrast to software classes, object types are not transient, they 
can represent the persistent state of something in the real world. 

• In contrast to database tables, object types do not represent all real 
world instances. Neither do object types represent a restricted 
subset of instances in the same way that software classes do.  
Instead, object types represent “typical” instances of things in the 
real world. 

• Finally, a conceptual model provides a good basis for both software 
and database designs. 

OBJECTS

Conceptual
Models

OBJECTS

Conceptual
Models

Software
Models

Database
Models  

Figure 8: Conceptual Models as the Basis For Software and Database Designs 

Conceptual models can also provide the foundation for better 
communication between the object oriented and information systems 
developers.  Even better, if both groups participate in developing the 
conceptual model, a shared understanding is forged between them. 

 

Model Abstraction Instances Volatility Logic 

Software Class/Object As required 
during 
execution 

Transient Application 
Logic 

Database Table/Row All real 
world 
objects 

Persistent No Logic 

Conceptual Type/Object Typical real 
world 
objects 

Real world 
state 

Real world 
behaviour 

Table 1: Comparison of the Three Types of Model 



The key differences between object oriented software designs, database 
designs and conceptual models are summarized in Table 1 above. 

Online Auction Example 

Many of the ideas presented above are somewhat abstract in nature.  A 
short, concrete example is offered to illustration the benefits of conceptual 
modelling.  The example is based on a web site that conducts on-line 
auctions.  Parts of the site can be viewed by any casual Browser. If a 
Browser wants to bid in an auction they must Register to become a 
Member.  A Member can Logon to the site and make Bids.  Sellers are 
Members who post something to sell at the web site.  A Seller can Add 
Auction Items and Open Auctions.  A Buyer is a Member who has 
made the highest bid when the auction is Closed.  A winning bid must be 
above the reserve price set by the Seller.  Auctions are Closed 
automatically on the date and time set by the Seller.  The Buyer must 
Make Payments for the Auction Item that they have purchased.  One of 
the tasks performed by the back office Staff is to Maintain 
Categories of Auction Items. 

These requirements are summarized in the Use Case Diagram below. 

 

Figure 9: Online Auction Use Cases 



The database design for the online auction site is shown in the data model 
diagram below. 

MEMBER
# MEMBER ID
* FIRST NAME
* SURNAME
* EMAIL
o CITY
* STATE
* COUNTRY
* DATE REGISTERED
* USER ID
* PASSWORD

AUCTION
# AUCTION ID
* OPEN DATE
* OPEN TIME
* CLOSE DATE
* CLOSE TIME
* RESERVE PRICE

BID
# BID ID
* DATE
* TIME
* AMOUNT

PAYMENT
# PAYMENT ID
* DATE
* AMOUNT

AUCTION ITEM
# ITEM ID
* DESCRIPTION
o IMAGE

CATEGORY
# CATEGORY ID
* DESCRIPTION

 

Figure 10: Online Auction Data Model 

It is tempting to take the data model above and use it as the basis for 
creating a software design for the Entity Beans.  A design based on the 
data model would include an Entity Bean for each table.  The use of the 
term “Entity Bean” in the J2EE specification even suggests that this is the 
correct thing to do.  Entities are a familiar concept to data modelers which 
automatically suggest the use of tables. 

However, this approach would suffer from a number of disadvantages: 

• The client will need to make many “fine-grained” remote references 
to the Entity Beans.  The remote references will be taking place 
across the network and will result in increased network traffic. 

• If an Entity Bean contains a reference to a second Entity EJB the 
reference will be implemented as a remote reference.  This is done 
to allow for the possibility that Entity Beans can reside in different 
containers but still reference one another.  Remote references incur 
a significant performance overhead when compared to normal object 
references. 

• The software design would become dependent on the database 
schema.  Changes to the database schema will require parallel 
changes to the software design.  This represents a step back from 
the data independence that information systems developers have 
come to expect. 



 

Figure 11: Online Auction Software Design 

The disadvantages listed above, suggest that the database model does not 
provide a good basis for an Entity Bean design.  A better approach is to 
incorporate Entity Beans into the design as “coarse-grained business 
components” which are shared between clients.  The role of the Entity 
Beans is to encapsulate the business and data access logic associated with 
the persistent classes.  The result can be regarded as a business-oriented 
interface to the underlying database [9] and [10]. 

Applying this approach to the online auction application leads to the 
potential design shown in Figure 11.  AuctionEntityEJB is mapped to 
the AUCTION, AUCTION ITEM, BID and PAYMENT tables in the database.  
AuctionItem, Bid and Payment are “dependent objects”.  A dependent 
object does not exist in its own right.  Instead, it is dependent on and has 
its life cycle managed by an Entity Bean [10].  In this case, 
AuctionEntityEJB will create new instances of AuctionItem, Bid and 
Payment as they are required to store the data retrieved from the 
AUCTION ITEM, BID and PAYMENT tables in the database. 

The design of MemberEntityEJB illustrates that the approach 
described above is simply a design guideline rather than a rigid formula to 



be doggedly applied.   In this case, MemberEntityEJB has been mapped to 
just a single table (MEMBER) in the database. 

So far, we have not discussed the role of Session Beans in the software 
design.  In this example, AuctionSessionEJB implements a session 
façade [10]. The purpose of a session façade is to hide the details of 
accessing Entity Beans from the client.  A session façade also handles 
relationships between Entity Beans, removing the need for the Entity 
Beans to reference each other.  This avoids costly remote references 
between Entity Beans.  The result is improved performance and a simple, 
service-oriented interface to the client. 

However, care must be taken that session façades do not become 
excessively “bloated” by including too much of the application logic.  This 
approach would be a step backwards to the “monolithic” style of 
application design.  This potential danger can best be avoided by ensuring 
that application logic is well distributed between the Session and Entity 
Beans.  In the example, AuctionEntityEJB includes operations such as 
addBid(bidAmount:long) and openAuction() which implement 
business logic.  These operations are in addition to the simpler data 
“setting” and “getting” operations which simply store and retrieve data 
values.  They provide the domain logic of the application. 

Although not shown in the example, AuctionSessionEJB will also 
include operations such as addBid(bidAmount:long) and 
openAuction().  However, these operations will simply “delegate” to 
AuctionEntityEJB. 

An important thing to note about the design shown in Figure 11 is that it 
would definitely not provide a good basis for a database design.  If the 
database consisted of just two tables, MEMBER and AUCTION, it would not 
be properly normalised.  This would most likely lead to performance 
problems and make the database difficult to modify at a later date. 

The conceptual model for the online auction is shown in Figure 12 below.  
The model represents problem domain concepts as object types.  Object 
types include real world state and real world behavior.  They represent 
“typical” instances objects in the real world. 

In the example, Person, Membership, AuctionItem, 
AuctionCategory, Auction and Payment have state but no behaviour.  
Member, Seller and Buyer have behaviour but no state.  Staff and Bid 
have both state and behaviour.  PersonRole is an abstract concept which 
has been included to help structure the model. 

In this example, the conceptual model has been presented as a UML Class 
Diagram but this is not the only option available to conceptual modellers.  
Techniques such as Object Role Modelling (ORM) [11] and The IDEF5 
Ontology Capture Method [12] could equally well have be used to develop 



the conceptual model.  However, the there are significant advantages to 
using the standard UML notation to describe all three models.  The only 
danger is that the common notation will lead to misunderstandings and 
arguments about whether the diagrams describe an elephant’s ear, an 
elephant’s trunk or the entire elephant! 

 

Figure 12: Online Auction Conceptual Model 

 

                                            

[1] Pour, G., “Enterprise Java Beans 101: Sever-Side Components”, Software 
Development, April 2000. 

[2] See Sun’s web site at http://java.sun.com 

[3] Gould, S., “Develop n-tier applications using J2EE”, Java World, December 2000. 

[4] Ambler, S., “Crossing the Object-Data Divide”, Software Development, March 2000. 

[5] See Kristen Nygaard’s web site 
http://www.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/F_OO_start.html 



                                                                                                                             

[6] Weber, R. “The Information Systems Discipline: The Need for and Nature of a 
Foundational Core”, Proceeding of the Information Systems Foundations Workshop on 
Ontology, Semiotics and Practice, 1999. 

[7] Shanks, G., “Semiotic Approach to Understanding Representation in Information 
Systems”, Proceeding of the Information Systems Foundations Workshop on Ontology, 
Semiotics and Practice, 1999. 

[8] See the Jain World website at http://www.jainworld.com/literature/story25.htm 

[9] Larman, C., “Enterprise JavaBeans 201: The Aggregate Entity Pattern”, Software 
Development, April 2000. 

[10] Alur, D., Crupi, J., Malks, D., Core J2EE Patterns: Best Practices and Design 
Strategies, Sun Microsystems Press, 2001. 

[11] Haplin, T. A., Conceptual Modelling and Relational Database Design, Second 
Edition, Prentice Hall, 1995. 

[12] The IDEF 5 Method Report, Knowledge Based Systems, Inc, 1994. 


