

AUSTRIAN ACADEMY OF SCIENCES

Bell, Wigner, causal reasoning, and interpretations

Andrea Di Biagio www.patternsthatabide.xyz QISS Virtual Seminar 2025-06-19

Bell, Wigner friends

Bell, Wigner Wigner's friend

is Emanuele really in a superposition?

whenever I look in the lab, I see him in a definite state

it *must* just be a matter of lacking information, not a real superposition... <u>right</u>?

a problem with the quantum description

similar situation as with EPR... quantum theory said the outcomes were random, but there was a local hidden variable model for the the EPR correlations

extended Wigner's friend scenario

violations of certain inequalities in conflict with intuitive metaphysical assumptions

A No-Go Theorem for Observer-Independent Facts

by Časlav Brukner ^{1,2} ⊡ *Entropy* **2018**, *20*(5), 350; https://doi.org/10.3390/e20050350 nt Facts

extended Wigner's friend

other theorems

PAPER • OPEN ACCESS

A possibilistic no-go theorem on the Wigner's friend paradox

Marwan Haddara and Eric G Cavalcanti New Journal of Physics, Volume 25, September 2023

arXiv:2209.03940 (quant-ph)

[Submitted on 8 Sep 2022]

A no-go theorem for absolute observed events without inequalities or modal logic

QUANTUM MECHANICS **Facts are relative** Časlav Brukner 🗠 <u>Nature Physics</u> 16, 1172–1174 (2020)

Nick Ormrod, Jonathan Barrett

arXiv:2308.16220 (quant-ph)

[Submitted on 30 Aug 2023]

A review and analysis of six extended Wigner's friend arguments

David Schmid, Yilè Yīng, Matthew Leifer

A "thoughtful" Local Friendliness no-go theorem: a prospective experiment with new assumptions to suit

Howard M. Wiseman^{1,2}, Eric G. Cavalcanti³, and Eleanor G. Rieffel⁴

Doi:

https://doi.org/10.22331/q-2023-09-14-1112

Citation:

Quantum 7, 1112 (2023).

Home > Foundations of Physics > Article

When Greenberger, Horne and Zeilinger Meet Wigner's Friend

Open access | Published: 27 June 2022 Volume 52, article number 68, (2022) Cite this article

Gijs Leegwater

Article <u>Open access</u> Published: 18 September 2018

Quantum theory cannot consistently describe the use of itself

Daniela Frauchiger & Renato Renner

Nature Communications 9, Article number: 3711 (2018)

plan

- local friendliness theorem
- constraints on interpretations: relation to Bell
- causal modelling

 - solution: (post) quantum causal modelling
 - causal modelling cannot explain LF inequality violations

classical causal modelling cannot explain Bell inequality violations

extended Wigner's friend scenario

 $f(ab \mid xy)$

extended Wigner's friend scenario

 $f(ab \mid xy)$ $f(abc \mid x = 1,y)$

LF no-go theorem

LF inequalities

LF no-go theorem

closing remarks

experimental realisations

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Experimental test of local observer independence

Massimiliano Proietti¹, Alexander Pickston¹, Francesco Graffitti¹, Peter Barrow¹, Dmytro Kundys¹, Cyril Branciard², Martin Ringbauer^{1,3}, Alessandro Fedrizzi¹*

nature physics

A strong no-go theorem on the Wigner's friend paradox

Kok-Wei Bong^{1,4}, Aníbal Utreras-Alarcón^{1,4}, Farzad Ghafari^{1,4}, Yeong-Cherng Liang², Nora Tischler¹, Eric G. Cavalcanti³, Geoff J. Pryde¹ and Howard M. Wiseman¹

increasingly credible friend

ARTICLES https://doi.org/10.1038/s41567-020-0990-

Check for updates

arXiv:2409.15302 (quant-ph)

[Submitted on 4 Sep 2024 (v1), last revised 3 Jun 2025 (this version, v2)]

Towards violations of Local Friendliness with quantum computers

William J. Zeng, Farrokh Labib, Vincent Russo

16 qubits

QUANTINUUM

metaphysics roadmap

Bell's theorem

$f(ab | xy) = \sum_{\lambda} p(ab | xy\lambda)p(\lambda | xy)$

 $p(\lambda \,|\, xy) = p(\lambda)$

Bell's theorem

$f(ab | xy) = \sum_{\lambda} p(ab | xy\lambda)p(\lambda | xy)$

 $p(\lambda \,|\, xy) = p(\lambda)$

Bell's theorem

$f(ab | xy) = \sum_{\lambda} p(ab | xy\lambda)p(\lambda | xy)$

 $p(\lambda \,|\, xy) = p(\lambda)$

Bell's second theorem

$f(ab | xy) = \sum_{1} p(ab | xy\lambda)p(\lambda | xy)$

 $p(\lambda \,|\, xy) = p(\lambda)$

Bell's second theorem

 $f(ab | xy) = \sum_{\lambda} p(ab | xy\lambda) p(\lambda | xy)$

Bell's second theorem

 $f(ab | xy) = \sum_{\lambda} p(ab | xy\lambda) p(\lambda | xy)$

Bell's second theorem

 $f(ab | xy) = \sum_{\lambda} p(ab | xy\lambda) p(\lambda | xy)$

Bell's second theorem

 $f(ab | xy) = \sum_{\lambda} p(ab | xy\lambda) p(\lambda | xy)$

local-friendliness theorem

$$f(ab | xy) = \sum_{c} p(abc | xy)$$

local-friendliness theorem

[2] Cavalcanti and Wiseman (2021) Implications of Local Friendliness violations for quantum causality, Entropy 23, 8

local-friendliness theorem

[2] Cavalcanti and Wiseman (2021) Implications of Local Friendliness violations for quantum causality, Entropy 23, 8

local-friendliness theorem

^[2] Cavalcanti and Wiseman (2021) Implications of Local Friendliness violations for quantum causality, Entropy 23, 8

implications for interpretations

alternatively, modify QM: spontaneous collapse, observers / consciousness fundamental

interpretations resolving all theorems by dropping the same assumption:

- pilot wave theory (aka Bohmian mechanics)
- superdeterministic models
- **Everettian QM (aka many worlds)**

Copenagen(ish) interpretations forced to drop a different assumption in each theorem

"no-interpretation" interpretation not good anymore \implies need to talk about what happens to different observers

remarks

- EWF stands to WF like Bell stands to EPR
- observations of friend play the role of the hidden variables of Bell
- violations of LF inequalities already happened, but for small systems
- what is a good friend? ---> theory of observation
- letting go of absoluteness of observed events:
 - what does it mean? how does it happen?
 - assumption in Bell, revise?

$$f(ab | xy) = \sum_{c} p(abc | xy)$$
$$p(a = c | x = 1) = 1$$

Bell and classical causal models

classical causal modelling

causal structure = a directed acyclic graph (DAG) (cause and effect relations)

compatibility = Markov conditions \approx variables depend only on direct causes

used in medicine, economics, epidemiology, sociology, AI, etc...

causal explanation

causal structure + compatible probability distribution

classical causal modelling Bell **Bell DAG** B A $\boldsymbol{\Lambda}$ Bell Λ DAG

Markov condition

alternative causal models

compatible with Bell inequality violations...

AND ALSO

BUT

in tension with Bell's assumptions (of course)

finetuned explanations

no finetuning principle

no finetuning principle

every statistical independence in the data is implied by the causal structure

$A \perp B \mid C \iff A \perp_d B \mid C$

d-separation

$A \perp_d B \mid C$

C d-separates A and B if it blocks all paths from A and B

collider

 $C \not\leq X$

no finetuning principle

data

 $A \perp B \mid C$

A and B are statistically independent given C

 $p(ab \mid c) = p(a \mid c)p(b \mid c)$

 $A \xrightarrow{C \not\leq X} A$

no finetuning principle

data

 $A \perp B \mid C$

A and B are statistically independent given C

 $p(ab \mid c) = p(a \mid c)p(b \mid c)$

model $A \perp_d B \mid C$

no finetuning

A and B are *d*-separated by *C*

alternative causal models

compatible with Bell inequality violations...

<u>BUT</u>

 $B \mathrel{{\it I}}_d X \mid Y$ finetuned explanations

requires more explanation

Wood-Spekkens theorem

all classical causal models for Bell inequality violations are finetuned

PAPER • OPEN ACCESS

The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bellinequality violations require fine-tuning

Christopher J Wood and Robert W Spekkens

<u>New Journal of Physics, Volume 17, March 2015</u>

Citation Christopher J Wood and Robert W Spekkens 2015 New J. Phys. 17 033002 **DOI** 10.1088/1367-2630/17/3/033002

(no need for spacelike separation!)

$$L_d Y | X$$

causal structure

Markov

$$\implies$$

Bell inequalities

observations

Wood-Spekkens solution

 $p(abxy) = \sum p(a | x\lambda)p(b | y\lambda)p(x)p(y)p(\lambda)$

PAPER • OPEN ACCESS

The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bellinequality violations require fine-tuning

Christopher J Wood and Robert W Spekkens

New Journal of Physics, Volume 17, March 2015

Citation Christopher J Wood and Robert W Spekkens 2015 New J. Phys. 17 033002 **DOI** 10.1088/1367-2630/17/3/033002

quantum causal modelling Bell

Wood-Spekkens solution

_ $p(abxy) = \operatorname{tr} \left| E_x^a E_y^b \rho_{\mathscr{L}} \right| p(x)p(y)$

- $\implies A \perp Y | X$
 - $\implies B \perp X \mid Y$
- \Rightarrow Bell inequalities
- \Rightarrow Tsirelson bound

Wigner and post-quantum causal models

(luantum

2024-09-26, volume 8, page 1485 Relating Wigner's Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning

Yìlè Yīng

Marina **Maciel Ansanelli**

David **Schmid**

Eric Gama Cavalcanti

Elie Wolfe

post-quantum causal modelling

post-quantum causal modelling

DAG

generalised **Markov condition**

PAPER · OPEN ACCESS

Theory-independent limits on correlations from generalized Bayesian networks

To cite this article: Joe Henson et al 2014 New J. Phys. 16 113043

GPT circuit

A probability distribution over observed nodes denoted as $P(obs(\mathcal{G}))$, is GPT-compatible¹⁹ with a given causal structure \mathcal{G} if and only if it can be generated by a GPT in the way prescribed by \mathcal{G} , namely, if and only if there exists a GPT ${\sf T}$ such that - a system in T is associated to each edge that starts from a latent node in \mathcal{G} ,

for each latent node Y and for any value of its observed parents, denoted Opa(Y), there is a channel $\mathcal{C}_Y(\mathsf{opa}(Y))$ in T from the systems associated with latent-originating edges incoming to Y to the composite system associated with all edges outgoing from Y,

for every value x of an observed node X, and for any value opa(X) of its observed parents Opa(X), there is an effect $\mathcal{E}_X(x|opa(X))$ in ${\sf T}$ on the system composed of all systems associated with edges incoming in X, such that $\sum_{x} \mathcal{E}_{X}(x|\operatorname{opa}(X))$ is the unique deterministic effect on the systems associated to edges coming from latent nodes to X,

- $P(obs(\mathcal{G}))$ is the probability obtained by wiring the various tests $\mathcal{E}_X(x|\operatorname{opa}(X))$ and channels $\mathcal{C}_Y(\mathtt{opa}(Y)).$

Note that the theory T may contain several system types, e.g., including also classical ones. According to these definitions above, an observed node with no latent parents is simply associated with a (conditional) probability distribution (a set of effects on the trivial system that sum to the unique deterministic effect on the trivial system), while a latent node with no latent parents is associated to a classically-controlled state over the relevant systems (i.e., a controlled deterministic channel from the trivial system).

$p(abxy) = (E_{a|x} \otimes E_{b|y})[\rho] \ p(x)p(y)$

 $A \perp Y | X$ $B \perp X | Y$ $C \perp Y | x = 1$

GPT circuit

$$p(abxy) = \sum_{c} (E_{a|xc} \otimes E_{c} \otimes E_{b|y})[\rho] \ p(x)$$

$$E_{a|x=1,c} \propto \delta_{ac}$$

$$A \perp Y | X \qquad B \perp X | Y \qquad \text{LF inequality}$$

alternative causal models

superluminal causation

superdeterminism

allow for LF inequality violations

AND ALSO

retrocausality

BUT

in tension with LF assumptions (of course)

finetuned explanations

our theorem

all GPT-causal models for LF inequality violations are finetuned

 $B \perp X \mid Y$

 $C \perp XY$

- no finetuning

(no need for spacelike separation!)

Veronika protocol

$C \perp XY$

Veronika Bauman

Veronika protocol

$C \perp XY$?

Veronika protocol

$C \perp XY$?

our theorem

all GPT-causal models for LF inequality violations are finetuned

 $B \perp X \mid Y$

 $C \perp XY$

- no finetuning

(no need for spacelike separation!)

our paper

(luantum

2024-09-26, volume 8, page 1485 **Relating Wigner's Friend Scenarios to** Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning

- LF inequalities as monogamy relations lacksquare
- generalisation past GPT-causal models \bullet
 - $(A \perp_d B | C \implies A \perp B | C)$ • *d*-sep causal models
 - cyclic causal models \bullet

Yìlè Yīng

Marina **Maciel Ansanelli**

David **Schmid**

Eric Gama Cavalcanti

Elie Wolfe

giving up absoluteness of observed events?

giving up absoluteness of observed events

$$p(a = c \mid x = 1) \neq 1$$

disturbing Charlie too much

 $p(a = c \mid$

interference sign of relational facts no sense to ask "what was the value of C?" without actually asking Charlie interference effects delete information

absoluteness of observed events

 $f(ab | xy) = \sum p(abc | xy)$ p(a = c | x = 1) = 1

arXiv:2402.08727v2 (quant-ph)

[Submitted on 13 Feb 2024 (v1), last revised 20 Jan 2025 (this version, v2)] On the significance of Wigner's Friend in contexts beyond quantum foundations

Caroline L. Jones, Markus P. Mueller

Open Access Editor's Choice Article

Parallel Lives: A Local-Realistic Interpretation of "Nonlocal" Boxes

by Gilles Brassard ^{1,2,*} \square and Paul Raymond-Robichaud ^{1,*} \square Entropy 2019, 21(1), 87; https://doi.org/10.3390/e21010087

relative facts

$$\sum_{c} p(abc | xy)$$
$$x = 1 = 1$$

duplication

two or more Charlies in the box, no way to unambiguously identify the value of C

LF violation due to interference of these two localised worlds

thank you for listening

closing remarks

- EWFS stands to WF like Bell stands to EPR
- EWFS even stronger challenge to causal modelling
 - is there a further generalisation?
- letting go of absoluteness of observed events: what does it mean, exactly?
- violations of LF inequalities already happened, but for small systems
 - what is a good friend?
 ---> theory of observers

