
The Importance of Being Agile
Phil Robinson

E-mail: lonsdale@iinet.net.au

Introduction
In some ways, “agile” development can be viewed as a “grass roots” reaction
to the complexity of the “heavy-weight” UML-based methodologies. Sadly,
as with many important developments in the IT sector, “agile” is being
hyped beyond belief. This brief paper is intended to present the reader with
an overview of the important aspects of agile development.

The Technology Adoption Cycle

www.iinet.net.au/~lonsdale/
Lonsdale Systems Technology Adoption

The “chasm”

Laggards
Late

Majority
Early

Majority
Early

Adoptors
Innovators

Adoption of new technologies follows a well-defined cycle which moves from
initial interest by a small group of “innovators” to the tardy adoption by a
group of “laggards”.

It can be argued that software development approaches follow roughly the
same sort of cycle.

Not all innovative technologies become mainstream. First, they have to
cross the “chasm” in the adoption cycle. The “chasm” represents a
“credibility” barrier for a new technology. The “chasm” is crossed when early
adopters of the technology confirm its value to the larger group of potential
users. Technology can also be “marketed” or simply “hyped” across the
“chasm”.

There are many examples of technologies that fail to make it across the
chasm. For example, Betamax video, quadraphonic sound and the Forth
programming language never really achieved the big time!

Waves of methodologies

www.iinet.net.au/~lonsdale/
Lonsdale Systems Methodology Waves

Stru
ct

ur
ed

M
et

ho
do

lo
gie

s

Obje
ct-

Orie
nt

ed

M
et

ho
do

log
ies

Agil
e

M
et

ho
do

log
ies

1980 1990 2000

agile
methodologies
are crossing
“the chasm”

Since the 1980’s there have been two major approaches to software
development - structured and object-oriented. Agile development represents
a third approach and there is every indication that it is in the process of
crossing the “chasm”.

Before looking at agile development in detail we will briefly recap on the
structured and object-oriented development approaches.

The 1st Wave – Structured Methodologies
Structured methodologies view software development as a process of
transformation. Requirements are transformed into designs which are, in
turn, transformed into program code and working systems. The major flaw
with this approach is that no one ever fully explained how the
transformation was performed. The result was a series of discontinuities in
the development life-cycle. In practice when people moved from analysis to
design, they effectively started all over again!

Structured methodologies frequently employ a large number of different
techniques. Each technique is often based on a different underlying
paradigm, such as Data Flow Diagramming or Entity-Relationship
Modelling. The different paradigms often leads to further discontinuities
within individual life-cycle stages.

Also, most structured methodologies are based on a “waterfall” life cycle.
This assumes that the work products of a stage must be fully defined and
approved before the subsequent stage can commence. This approach means
that the two biggest risk factors in software development – requirements
and software architecture – do not get addressed until the end of the
development cycle.

www.iinet.net.au/~lonsdale/
Lonsdale Systems Structured Methodologies

• Transformation of work products
• Waterfall life-cycle addresses requirements

and architecture risks late in the project
• Attempt to “predict” all necessary tasks

Test
Case

Test

COBOL
C

Construction

Structure
Diagrams

Design

Data Flow
Diagrams

Data
Models

Analysis

Text

Requirements

Typically, structured methodologies attempt to predict and sequence all of
the tasks required to develop software. They do this so that less
experienced developers may benefit form the wisdom of more experienced
developers.

SSADM (www.ogc.gov.uk/index.asp?docid=1342) and the German Government’s V-
Model (www.informatik.uni-bremen.de/uniform/gdpa/) are typical examples of
structured methodologies.

The 2nd Wave - Object Oriented Methodologies
Object-oriented methodologies are all based on an “object” paradigm that
can be used throughout the majority of the development life-cycle. The
object paradigm encourages the development of software to be viewed as a
process of evolution rather than one of transformation. This helps to
remove the discontinuities between the different stages of the life-cycle.

The consistent paradigm also encourages an iterative approach to
development. Iterative approaches allow the requirements and architecture
risks to be addressed much earlier in a development project.

By far and away the most widely known object-oriented methodology is the
Rational Unified Process (RUP) (www.rational.com/products/rup/).

www.iinet.net.au/~lonsdale/
Lonsdale Systems

Test
Case

TestConstructionDesignAnalysis

Use
Case

Requirements

Objects

Object-Oriented Methodologies

• Evolution of work products
• Iterative life-cycle addresses requirements and

architecture risks early in the project
• Still attempts to “predict” all necessary tasks

Software Development Suffers From Too Many Analogies

Because it is a relatively new discipline, it is very tempting to make
analogous comparisons between software development and other disciplines.
Building is a popular analogy. However, while this can be useful in a
limited way, taking the analogy too literally can be dangerous. Lets explore
why.

Characteristics of the Building Life-Cycle

www.iinet.net.au/~lonsdale/
Lonsdale Systems Building

10 % 20 % 70 %

Req
uire

m
en

ts

Des
ig

n

Const
ru

ct
io

n

Smart people
Must obey
physical laws

Less smart people
Expensive
Time-consuming
Materials required

Building construction has three stages – requirements, design and
construction. Construction occupies 70% or more, of the time it takes to
create a building. Requirements and design are done by smart people so
that less-smart people can do the construction. Designs have to take
account of natural laws such as gravity. Also building construction must
address the logistic problems of the timely provision of raw materials at the
building site.

Characteristics of the Software Development Life-Cycle

www.iinet.net.au/~lonsdale/
Lonsdale Systems

30 % 70 %

Req
uire

m
en

ts

Des
ig

n

Software Development

Smart people
Endlessly adaptable

Models Source Code

Construction is
–Free
–Instant
–Error free
–No material required

In contrast, software development does not have to obey any natural laws
and does not require any raw materials. Unlike bricks and mortar, software
is endlessly adaptable. There is very little opportunity to use “less-smart”
(and less expensive) people.

This paper supports an emerging point of view that software construction is
in fact free, instant and error-free. This is because the actual construction
of software takes place when source code is compiled into executable code.
Everything else prior to this point (including writing the source code) should
be regarded as design. Source code should be regarded as nothing more
than a very detailed design specification.

Even the designers of buildings, would agree that it is much harder to
predict all of the tasks to create a design in advance. Many tasks only
become obvious as the design emerges. If nearly all software development
activities are related to design, then it is also very difficult to predict all of
the necessary tasks in advance.

The 3rd Wave - Agile Methodologies
Agile methodologies take the uniqueness of software development as a
starting point and attempt to define development approaches that take
account of the uniqueness.

In order to clarify the principles of agile development, a group of developers
got together and drafted the “Agile Manifesto”. The manifesto provocatively
states that developers should value:

 individuals over processes;
 working software over documentation;
 customer collaboration over contract negotiation; and
 responding to change over following a plan.

www.iinet.net.au/~lonsdale/
Lonsdale Systems Agile Methodologies

• “Agile”
– Characterised by

quickness, lightness,
and ease of movement;
nimble

– Mentally quick or alert:
an agile mind

• Agile methodologies
attempt to be
“adaptive” rather than
“predictive”

There are a number of competing agile methodologies. Some of the better
known are listed below. In this paper we shall concentrate on the features
of extreme Programming (XP) as this approach adopts a number of
unconventional strategies to software development.

www.iinet.net.au/~lonsdale/
Lonsdale Systems Agile Methodologies

• eXtreme Programming (XP)
• Crystal
• Scrum
• Feature Driven Development (FDD)
• Dynamic System Development Method

(DSDM)

eXtreme Programming (XP)

www.iinet.net.au/~lonsdale/
Lonsdale Systems eXtreme Programming

Diagram courtesy of www.Xprogramming.com
(This site also has many more details about XP)

Pair Programming

Peer reviews are a proven technique for improving quality. Pair
programming is simply a logical extension of peer reviews. In fact although
this is one of the most controversial aspects of XP, there is a body of
empirical evidence to support the practice.

Testing

Testing is fundamental to software quality. Designing test cases before
coding and employing automated test tools is simply a strengthening of an
existing practice.

Refactoring

Even simple designs suffer the effects of entropy over time. Continuous
design improvement (refactoring) is a way of preventing this from
happening.

Metaphor

All project teams Have their own vocabulary to describe systems. A system
metaphor is simply a way of formalising this practice.

Sustainable Pace

It is obvious that tired and exhausted developers do not give their best.
Maintaining a sustainable pace is a sensible way to ensure that people give
their best to a project.

Whole team

Communication is an important aspect of all projects. Locating all
developers together and allocating a full-time customer representative
improves communication.

Planning Game

The tradeoffs encountered during a project are neatly summarised by the
“Project Equation” which states:

product scope + product quality = project time + project cost

Both sides of the equation must balance. Any increase in product scope
must be accompanied by an increase in project time and/or cost. Decreasing
the cost of a project or the time available, while holding the product scope
fixed will inevitably lead to reduced product quality.

In the planning game, developers estimate project time and cost while users
prioritise product scope and quality. The project Time and cost then remain
fixed for a single iteration based on the planned product scope.

Which Approach is right For You?

www.iinet.net.au/~lonsdale/
Lonsdale Systems Which Approach?

Predictive???
Agile???

Is the agile approach right for you? The answer to that question is “it
depends…” Remember that the most widely used approach to software
development is still “Code and Fix”. In many cases, any methodology,
however agile or lightweight would lead to some improvement in product
quality and staff productivity.

www.iinet.net.au/~lonsdale/
Lonsdale Systems Which Approach?

PredictiveAgile

High certaintyRapid valueObjective
Larger teamsSmaller teamsSize
ExpensiveInexpensiveRefactoring

Current and
future
requirements

Current
requirements
only

Architecture

Known early,
stable

Emerging,
changing

Requirements
AvailableCommittedCustomers
Adequate skillsSuperior skillsDevelopers

If you currently follow one of the more traditional methodologies be careful
about ditching too much of it, too fast. It is important to avoid
misconceptions such as - “Responding to change over following a plan”
“Great! Now I have a reason to avoid planning and just code whatever
comes up next…”

The table above provides a comparison of agile and predictive methodologies
with some attributes that may help you make a choice.

At the end of the day “agile” may disappear with a “puff” into its own cloud
of hype. This has happened in the past with 4GLs, CASE tools, RAD…
Remember, there are no “silver bullets” that make software development
simple!

