Studying the Performance and Memory Usage
Effects of Adding Reference Counting to Rotor:
A Research Proposal

Chris Sells, 5/6/02

Background
Component-level reference counting, as provided by Microsoft’s Component Object Model (COM), allows for finalization of resources deterministically, but only when it was used properly from the client, including the breaking of cycles. Reference tracking, as implementing in Rotor, has no trouble with reference cycles and has a much more optimized scheme for memory management, but requires programmers to learn and properly use a per-class notification protocol to notify objects with non-memory resources to return them for reuse. Clearly, the advantages of both ref-counting and ref-tracking are desirable in a single system, since neither covers all cases satisfactorily.
By adding ref-counting to ref-tracking, Rotor should be able to combine the advantages of ref-tracking, i.e. optimized memory management and cycle management, with the advantages of ref-counting, i.e. deterministic finalization in the absence of cycles without the need to manage cycles or fragment the heap. Of course, the idea of adding ref-counting to a virtual machine is not a new one. In fact, anecdotal evidence suggests that the initial implementer of the CLI had many heated debates about producing a system that did just that, citing time and space overhead for why they ultimately decided against it.
Objective

The main goal of this research is to provide an initial implementation of ref-counting in Rotor and to study the resulting overhead as applied to simulations of heavy-use systems, e.g. multi-user access to a database, heavy use of unmanaged resources like large bitmaps and several transactions per second against a web site.
Milestones

The milestones of this research are as follows:
1. An implementation of ref-counting that cooperates with the current ref-tracking implementation.

2. Simulations for use in testing Rotor in the following modes:

· Tests run against a ref-tracking only version of Rotor when clients properly notify objects to release their resources, eliminating the need for finalization, simulating the ideal usage model for the current virtual machine implementation.

· Tests run against a ref-tracking only version of Rotor when clients do not properly notify objects to release their resources, simulating a more typical usage model for the current VM implementation.

· Tests run against a hybrid ref-counting/ref-tracking implementation of Rotor when clients properly notify objects to release their resources, making ref-counting unnecessary and therefore pure overhead.
· Tests run against a hybrid ref-counting/ref-tracking implementation of Rotor when clients do not properly notify objects to release their resources, simulating the ideal usage model for ref-counting.
Each test will be measured in terms of managed and unmanaged memory usage, unmanaged resource usage and transactions/unit of time to show the space and time overhead associated with the additional requirements of ref-counting when combined with ref-tracking.
3. Compilation of the test results.

4. Write up of the results for publication.

Deliverables

· Code updates to Rotor to support ref-counting in addition to ref-tracking.

· Test suite for comparing ref-tracking alone with hybrid ref-tracking/ref-counting.
· Research paper describing results.
Expected Results

These tests will provide a baseline for profiling ref-counting overhead with the eventual goal that it be made to be efficient enough to be added to future implementations of the CLI, if not in general purpose use, than at least as an option. Further, the expected results should show that ref-counting combined with clients that do not properly notify their objects will actually result in a time and space efficiency increase as objects are finalized deterministically, reclaiming non-memory resources long before additional requests are rejected or unmanaged memory is completely consumed.
Sponsor & Staff
Sells Brothers, Inc., a consulting firm specializing in distributed systems under Windows in general and .NET specifically, will sponsor this research by providing at least one staff member, Chris Sells, who has the following qualifications:
· Bachelor’s degree in Computer Science for the University of MN.

· Master’s degree in Software Engineering from the Oregon Graduate Institute.

· Several books, short-courses, articles and conference talks in the area of COM and .NET programming.
· A more complete list is available at http://www.sellsbrothers.com/services/#resume.

Sells Brothers will also be providing preliminary results to the .NET and Rotor community for feedback, which may well result in gathering additional interested parties.
