
23/ The UK Oracle User Group Journal / Issue 24 Winter 2005 Oracle Scene

The IT Architecture Papers
IT groups have a pressing need to identify

those things worthy of their attention.

Many of our clients have asked us, What

do I need to know about and manage on

behalf of my client?

This question led us to think about how

we structured and presented our work. We

wanted a framework we could use in our

assignments and share with our clients.

In this series of papers, we have presented an

Information Technology (IT) Architecture

framework that encourages a minimalist

approach to IT Architecture by exploring a

number of extreme points of view.

We used the metaphors of cathedral and

shanty towns to discuss the extremes of

perfection and chaos in IT systems—in

other words, the extremes of architecture.

We implied a comparison between

building and town planning, activities

undertaken by humankind for several

millennia, and software systems

development, something that has only

been performed for the last few decades.

We delved into the differences between

human activity systems and software

systems, and classified both types of system

into a hierarchy of sub-systems. We noted

that, although the hierarchy is a convenient

way of classifying systems, the true nature

of business and software systems is to be

independent and overlapping.

This led to the notion of interoperability

as one of the key architectural issues,

‘…the ability of a system to successfully

interact with other, specified systems.’ [1]

We also referred to a formal definition of

IT architecture found in legislation passed

by the US Congress; the Information

Technology Management Reform Act of

1996 also known as the Clinger-Cohen Act.

‘An integrated framework for evolving

or maintaining existing information

technology and acquiring new

information technology to achieve the

agency’s strategic goals and information

resource management goals.’

We described an IT architecture

framework as a matrix of ‘system types’ as

rows and ‘architectural views’ as columns.

This was used to organise and group the

18 architectural elements that constitute

the framework.

The complete framework uses a single,

uncluttered diagram shown in Figure 1.

This approach reflects our belief that the

framework is simple to describe and easy

to recall. However, the diagram is not

trivial; the 18 different elements taken

together, fully define an IT architecture.

In the third article in this series, we

described how the framework could be

applied by grouping various elements into

defined areas of the framework. The

groupings were used to broadly

demonstrate the responsibility and

disciplines required of the people in the

organisation. The previous article explored

the relationship between the framework

and the concepts behind business planning.

The Extreme Architecture
Framework and the UML
In our discussion of the architecture

framework we have shown how the

framework can be used to classify the 18

architectural elements. We also described

how the architectural elements could be

described, using a variety of different

types of content. The content includes an

assessment of the current state of an

element; the vision for its future state;

potential risks and rewards associated

with the element; strategies to avoid risks

and realise rewards, or a fundamental

governing principles associated with the

element.

business and management

The eXtreme Architecture Process:
Amplifying the UML
By Phil Robinson, Lonsdale Systems, & Floris Gout, Independent Consultant

Fig. 1: Extreme Architecture Framework

24 Oracle Scene Issue 24 Winter 2005 / The UK Oracle User Group Journal /

The UML can be used to model systems

from two different perspectives:

• the structural perspective that

describes the relationship of individual

system elements to each other and how

they are organised into a system; and

• the behavioural perspective that

describes how individual system

elements interact with each other in

order to achieve the goals of the system.

The two perspectives are reflected in the

UML’s classification of diagrams. This is

shown in Figure 3 and Figure 4 below.

Structure diagrams show the static

structure of system elements [4].

Behaviour diagrams show the dynamic

behaviour of system elements [4].

Customising the UML
Classifying UML diagrams into structural

and behavioural categories is a useful way

to organise the UML’s specification.

However, the specification also states:

‘…this taxonomy provides a logical

organization for the various major kinds

of diagrams. However, it does not

preclude the mixing different kinds of

diagram types … the boundaries between

the various kinds of diagram types are not

strictly enforced... ’[4]

What this means, is that UML elements can

actually be combined on a single diagram in

any way that makes sense and does not

In this article, we are going to focus on

how the eighteen architectural elements

can be described using UML models.

The history and development of the UML is

well documented elsewhere so we shall not

repeat it here. Those seeking a good basic

introduction will find Martin Fowler’s book

The UML Distilled useful [2].

The starting point for our understanding

of how the UML can be used to model

architectural content is a statement in the

OMG’s UML Infrastructure Specification

Version 2.0:

‘the UML is a visual language for

specifying, constructing and documenting

the artefacts of systems’ [3].

Since the rows of our framework represent

different system types, the UML is perfect

for modelling our architectural elements.

The quote above also states that the UML

is a visual language. In common with all

languages, the UML has an underlying

vocabulary. In the case of the UML, its

vocabulary has been chosen so that the

language is suitable for describing systems

and the elements that they are composed

from. Because the UML is a visual

language, each of the system elements

has a unique graphical symbol.

Some examples of the UML’s vocabulary

and its graphical symbols are shown in

Figure 2 below.

Fig. 2: Examples of UML

Graphical Symbols

Fig. 3: Taxonomy of Structure Diagrams

Fig. 4: Taxonomy of Behaviour Diagrams

25/ The UK Oracle User Group Journal / Issue 24 Winter 2005 Oracle Scene

violate the underlying semantics of the

UML. For example, it is perfectly valid to

draw a single UML diagram that includes

both activities and use cases. The diagram

would be a useful way to depict a workflow.

In addition to allowing the creation of

custom diagrams, the UML has a number

of built-in features that allow the UML to

be customised by refining and extending

its vocabulary of system elements. The

main mechanisms for extending the UML

are:

• Stereotypes

• Tags

• Profiles.

Stereotypes allow users of the UML to

create their own, specialised versions of

the standard UML elements. Using

stereotypes, customised dialects of the

UML can be created. For example, the

UML symbols shown in Figure 2 include

an <<artifact>> stereotype element. This

element can be used to represent a system

development artefact such as a plan,

model, or specification. In addition to

allowing users of the UML to create their

own stereotypes, the UML includes a

number of pre-defined stereotypes.

Tags allow users of the UML to define

additional properties for the system

elements. For example, a UML Actor

element can be used to represent the user

of a software application. The following

UML tags might be added to an Actor

{department =Finance}, {minimum

experience=2 years} and {skill level=High}.

Profiles can be used to create customised

palettes of UML symbols. Profiles define

a consistent set of stereotype UML

elements (with tags if required) that can be

applied to a particular problem domain.

For example, there is a data modelling

profile for the UML that defines an

appropriate set of stereotypes for tables,

primary keys and foreign keys.

Modelling Architecture
Elements With the UML
We will now take a brief tour of the UML

and describe how it can be used to model

each of the framework elements.

Activity Diagrams
Activity diagrams model a system’s

behaviour, and are ideal for modelling

Sectors, Enterprises and Business

Processes from an Activity perspective.

Activity diagrams show the activities

performed connected by a number of

control flows that define a Workflow.

In addition to control flows, activity

diagrams can also show objects flowing

between activities. Object flows can be

used to represent Information

Requirements on an activity diagram.

Use Cases can be added to an activity

diagram to highlight the role that a

software Application plays in a Workflow.

Use Case Diagrams
Use case diagrams model the interaction

that takes place between an external actor

and a system. The interaction is normally

designed to help the actor achieve a goal.

Use case diagrams can be used to model a

software Application system from an

Activity architectural perspective.

Class diagrams
Class diagrams are the workhorse

diagrams of the UML. Although class

diagrams are traditionally used to model

the Architecture and Code associated with

Software Components, they can are also

useful for modelling more than one aspect

of the framework.

Business Objects can be modelled using the

built-in UML <<type>> class stereotype.

(When it is important to show that a class

represents Architecture or Code rather

than something else the <<implementation

class>> stereotypes can be used.)

Fig. 5: A UML Activity Diagram Representing a Workflow

Fig. 6: A UML Use Case Diagram

26 Oracle Scene Issue 24 Winter 2005 / The UK Oracle User Group Journal /

Interface Requirements can be modelled

using the <<interface>> and <<signal>>

class stereotypes.

Storage Requirements can be modelled by

adding a persistence tag to a class. The

persistence tag describes what happens to

attribute values when Application fails, or

is powered down. The tag has two values:

• {persistence=transient} means that the

values of the attributes are lost; and

• {persistence=persistent} means that the

values of the attributes are retained.

When combined with the data modelling

profile, which defines <<table>>, <<pk>>

and <<fk>> stereotypes, class diagrams

can be used to model database Schemas.

Object diagrams
Object diagrams are close cousins to class

diagrams. Class diagrams represent

system elements as abstract classes, while

object diagrams show the individual

objects belonging to the classes. Since an

object can represent almost anything, this

makes object diagrams one of the most

versatile of all of the UML diagrams.

This versatility is reflected in the ways in

which we can use object diagrams to

model the framework elements.

In addition to showing Information

Requirements as flows on activity

diagrams, the structural aspects of

Information Requirements can be modelled

with <<information requirement>>

stereotype objects on object diagrams.

Functional Requirements and Non-

Functional Requirements can also be

modelled using the appropriate stereotype

objects: <<functional requirement >> and

<<non-functional requirement >>.

User Interfaces can be modelled using

stereotype objects such as <<window>>,

<<dialogue>> <<report>> or <<button>>

to represent the visual components of the

user interface.

Package Diagrams
Packages are used to organise and group

the other elements of the UML. Package

diagrams can show both the contents of

packages, and the relationship between

packages.

Stereotype packages <<subject area>> and

<<functional area>> can be used to

represent Subject Areas and Functional

Areas. Entire software Applications can

be represented using an <<application>>

stereotype package.

Package diagrams can also be used to

describe the overall Architecture of a

software Application.

Fig. 7: A UML Class Diagram

Fig. 8: A UML Object Diagram Used to Represent Information Requirements

27/ The UK Oracle User Group Journal / Issue 24 Winter 2005 Oracle Scene

Sequence diagrams
Sequence diagrams model the interactions

that take place between the internal

components of a system. While sequence

diagrams can be used to model any of the

systems represented by the rows of the

framework, their traditional use is to

model the interaction between software

Components.

Component diagrams
Component diagrams are used to model

the deployment of Components. They can

also be used to model the architectural

aspects of an Application. Frequently, the

architecture of an Application is based on

a Framework such as J2EE or .Net.

Stereotype components such as <<entity

bean>> or <<session bean>> can be used

to represent elements of the Framework.

Fig. 9: A UML Package Diagram Representing Functional Areas

Fig. 10: A UML Sequence Diagram Representing the Realisation of a Use Case

28 Oracle Scene Issue 24 Winter 2005 / The UK Oracle User Group Journal /

Deployment Diagrams
Deployment diagrams are used to model

processing nodes. In terms of our

framework, these are the Platforms and

Networks. Deployment nodes can be

stereotypes such as <<router>>,

<<switch>> or <<server>>. The UML also

permits a specific visual icon to be

associated with stereotypes. This means

that the familiar symbols found on

network diagrams can be used without

stepping outside of the UML.

It is also possible to show how

Components are deployed onto

processing nodes by including them

within the node symbol.

Conclusion
The Extreme Architecture Framework

does not define a vocabulary for

describing architectural elements. This is

left to the user of the framework. A

variety of approaches can be used,

depending on the modelling paradigm or

standard that best suits the user of the

framework.

In this paper we have shown how the

UML is a good choice as a visual language

for modelling the architectural elements.

About the Authors
Phil Robinson and Floris Gout have

consulted for a number of organisations

and across a range of industry sectors.

They have worked together on various IT-

related planning projects. This series of

papers represents a major collaborative

effort, that organises not just the ideas of

the two authors, but also the many

inspiring people they have worked with.

Fig. 11: A UML Deployment Diagram Representing Platforms, Networks and Components

www.ukoug.org

