
business and management

Extreme Architecture: Architecture
Components
By Phil Robinson and Floris Gout

34 Oracle Scene Issue 19 Autumn 2004 / The UK Oracle User Group Journal /

IT groups have a pressing need to identify

the things worthy of their attention.

In this and a second paper, we present an

Information Technology (IT) Architecture

framework that draws inspiration from

legislation, enacted in 1996. The papers

encourage a minimalist approach to IT

Architecture by adopting a number of

extreme points of view.

In this paper, we present a comparison

between buildings, the traditional

foundation of architecture, and the

‘softer’ systems associated with IT. The

various building blocks of the framework

are introduced.

In our second article, the full IT architecture

framework is described using a single,

uncluttered diagram. The framework is

simple to describe and easy to recall. It

organises 19 different elements that, taken

together, define an IT architecture. This

second article will be published in a future

edition of Oracle Scene, and/or available

at http://www.ukoug.org/lib/

The framework provides a point of

reference for IT management, IT project

managers, developers and operations staff

who are frequently charged to do more

with less in these lean times. These groups

will find that the framework can offer

them a much needed lifeline.

A couple of years ago, we both found

ourselves working on strategic IT

planning projects. Since both projects

were similar, we began meeting on a

regular basis to share ideas and plot

strategies. We continued to meet long

after the projects had ended, and began to

realise that we were slowly defining an IT

architecture framework that was worth

sharing with a much wider audience.

Partly to emphasise that our framework is

different to other frameworks (and partly

to be unashamedly trendy) we coined the

phrase ‘extreme architecture’.

We use the word ‘extreme’ in two senses.

Firstly we believe that, compared to other

architecture frameworks, our framework

is minimalist in the extreme. In contrast to

other frameworks it is:

• Easy to describe

• Encourages an agile approach to

architectural work products

• Unifies a number of disparate disciplines

• Provides a variety of stakeholders with

a consistent view of an IT architecture.

The second sense in which we use extreme

involves a bit of word play. We believe

that our framework is in fact a very

pragmatic approach that adopts the

middle path thus avoiding the extremes of

perfection and chaos!

Building
In his well known essay on software

architecture, Frederick Brooks cites the

building of the cathedral at Reims as a

triumph of architectural vision1. According

to Brooks, eight generations of builders

sacrificed their own ideas in order to

maintain the design integrity of the cathedral.

In describing the cathedral, Brooks states,

‘…the joy that stirs the beholder, comes as

much from the integrity of the design as

from any particular excellences.’

Brooks offers the triumph of Reims as a

sort of Holy Grail for software developers.

In stark contrast, the authors of the Big Ball

of Mud Pattern2, describe what they claim

is the most frequently adopted software

architecture. They use the metaphor of a

shanty town to describe the architecture

and point out that shanty towns are,

‘…built from common, inexpensive

materials and simple tools, using relatively

unskilled labour.’

The authors argue that there are a number of

reasons why the big ball of mud is common:

• Pressure on project schedules and costs

• Inexperience, lack of skills, and high

staff turnover

• The complexity and rate of change of

the software requirements.

Confronted by the extremes of the Holy

Grail and a big ball of mud, we find ourselves

naturally drawn to the middle path. In doing

so we believe we we are in good company.

The Buddhist faith advises that,

‘…avoiding the extremes, gives vision and

knowledge and leads to calm, realisation,

enlightenment…’

Systems
Although quite useful at a superficial

level, the building-software metaphor can

only be taken so far. Buildings are static

structures that interact minimally with

their environment. In contrast, software

systems are by very nature, highly

dynamic and interactive.

The design integrity of a building is

determined by factors such as geometric

proportion, structural strength and the

materials used for its construction.

In comparison, the design integrity of

software depends on factors that are

much more abstract and sometimes

quite difficult to measure.

Another major difference is that software is

always embedded in some other system. In

some cases this is a hardware system such

as a cellular phone or microwave oven. In

other cases it is a (potentially much more

35/ The UK Oracle User Group Journal / Issue 19 Autumn 2004 Oracle Scene

complex) human activity system. In both

cases, a detailed understanding of the

system in which the software is embedded,

is essential for a proper understanding of

the software requirements. Our architecture

framework focuses on software that is

embedded in human activity systems.

Figure 1 shows how human activity

systems and software systems are often

decomposed into a hierarchy of systems.

Industry sectors, consisting of a group of

enterprises engaged in similar activities,

are placed at the top of the hierarchy.

Individual enterprises appear at the next

level. These are underpinned by business

processes, that are in turn supported by

software applications. The software

components used to construct applications

appear at the bottom of the hierarchy.

In addition to the hierarchical

decomposition of systems described

above, systems are often presented as

being nested one inside the other. The

nested view implies that a system can only

interact with its container system or the

other systems sharing the same container.

This implies, for example, that a business

process interacts in a limited way with the

business process of a different enterprise,

or that a software application supports a

single business process.

While restrictions such as these may have

been workable in the past, they are

unacceptable constraints in a modern

business environment. For example:

• It is common for business processes to

be outsourced. When this happens it

means that a number of enterprises

interact with a single business process.

• It is becoming common for people

outside an enterprise, such as

customers, agents and suppliers, to

interact directly with the enterprise’s

software applications, thus bypassing

the internal business processes.

• Modern software development

techniques emphasise the creation of

reusable components. The goal is to

reuse a component many times across a

variety of software applications.

For these reasons, we believe that it is

more realistic to view human activity and

software systems in terms of a number of

independent and overlapping systems.

Our view as illustrated in Figure 2 below.

Independent, overlapping systems are able

to interact with each other at all levels of

the hierarchy. For example:

• A software application might support a

number of different business processes.

• Some of the business processes may

span several different enterprises.

• A software application may correlate

information flowing from a number of

different enterprises.

• A software component may be

designed to provide a suite of generic

services that are used by one or more

industry sectors.

This view of human activity and

software systems leads to an overriding

requirement for interoperability

between the individual systems.

Interoperability can be defined as;

‘…the ability of a system to successfully

interact with other, specified systems.’

Architecture
High levels of interoperability are unlikely

to be found in software systems that

resemble a shanty town or big ball of

mud. As the builders of Reims knew,

to achieve a high level of design integrity,

it is necessary to develop a detailed

architectural plan and stick to it.

A clear and simple definition of what

constitutes architecture can be difficult to

achieve. We like this definition of building

architecture that was provided by

Fig. 1: Hierarchy of Subsystems

Fig. 2: The Independent and Overlapping Nature of Human Activity and Software Systems

36 Oracle Scene Issue 19 Autumn 2004 / The UK Oracle User Group Journal /

Ean MacDonald3, a retired architect said,

‘Architectural design is the simultaneous

resolution and solution of the various

architectural problems; that can include

location, aspect, and prospect, sun, wind,

and weather, materials and method,

finance, function, and form, to which may

be added a dash of flair that can make a

structure work of art.’

An equally appealing definition for IT

architecture was offered by Jim Sinur of

the Gartner Group at the 1996 ZIFA

Annual Forum,

‘If you can implement a drawing in more

than one way, you have architecture.

If you can implement a drawing in only

one way, then the drawing contains exact

specifications for instantiation, and you

have a design.’

Surprisingly, a formal definition of IT

architecture can be found in legislation.

In February 1996, the US Congress passed

the Information Technology Management

Reform Act of 1996, which is widely

known as the Clinger-Cohen Act.

It included a formal definition of IT

Architecture that has now passed into law,

‘An integrated framework for evolving

or maintaining existing information

technology and acquiring new

information technology to achieve the

agency’s strategic goals and information

resource management goals.’

A key aspect of the Clinger-Cohen Act’s

definition of IT Architecture is its reference

to an integrated framework. In fact, the

word framework is frequently used in

relation to IT architectures. A framework

describes an underlying structural

arrangement that can be used as the starting

point for developing an IT Architecture.

Perhaps the best-known architecture

framework is the Zachman Framework

for Enterprise Architecture, proposed by

John Zachman in 19874. The framework is

presented as a matrix of six rows and six

columns. Each row of the matrix describes

a perspective of the architecture as seen by

various enterprise roles (planner, owner,

designer, builder, out-of-scope, and the

functioning enterprise). The column

headings consist of what Rudyard Kipling

called the ‘six honest serving men’ (what,

why, when, how, where, and who).

Each cell of the matrix contains a primitive

model that describes a single aspect of

the architecture. Thus a fully populated

Zachman Framework consists of thirty-six

independent views of an enterprise.

The Zachman Framework is a

comprehensive, rich and intellectually

appealing approach to classifying

architectural models, but it is not always

easy to understand and apply.

Another noteworthy architecture framework

is The Open Group’s Architectural

Framework (TOGAF). As well as describing

the framework, TOGAF also includes a

detailed methodology that can be applied to

the development of an IT Architecture.

(TOGAF was in fact based on yet another

framework, the now defunct Technical

Architecture Framework for Information

Management (TAFIM) developed by the US

Department of Defense.)

Following the enactment of the Clinger-

Cohen Act, the US Office of Management

and Budget (OMB) issued a directive that

also included a brief description of an

architecture framework. We chose this

framework as the starting point for our

framework because we appreciate its

simplicity in comparison to the Zachman

Framework or TOGAF.

As the diagram above illustrates,

the OMB architecture framework

has three major components:

• An Enterprise Architecture, which

defines the relationships between

an enterprise’s business activities,

information systems, and its

information technology infrastructure.

• A Technical Reference Model, which

provides a generic description of the

services provided by an enterprise’s

information technology infrastructure.

• A Standards Profile, which is a

collection of information technology

standards that precisely define the

services identified in the Technical

Reference Model.

The Enterprise Architecture is further

decomposed into five sub-architectures:

• An Activity Architecturea, which

describes an enterprise’s high-level

business activities and workflows.

• An Information Architectureb, which

describes the information required to

support the business activities

described in the Activity Architecturec.

• A Software Architecture, which

describes the software that is required

to support the Activity and

Information Architectures.

• A Data Architectured, which describes

the logical and physical structure of the

enterprise’s software-maintained data

stores.

• A Technology Architecturee, which

describes the technical environment in

which software executes.

a In the OMB memorandum, this architecture

is called the Business Process Architecture.

We have changed the name because we have

already used the phrase business process to

describe a type of system.

b It is common practice to either combine the

Information Architecture with the Activity

Architecture and call it a Business

Fig. 3: The OBM Architecture Framework

37/ The UK Oracle User Group Journal / Issue 19 Autumn 2004 Oracle Scene

Architecture or to include information

requirements in the Data Architecture. We

do not like the first approach, as the phrase

Business Architecture sounds rather vague

and nebulous. As far as the second approach

is concerned, we feel it does not highlight the

fact that information is related to business

activity, while data is more closely related to

information technology. In addition, there

are issues associated with an Information

Architecture, such as the management

of non-electronic records that are not

accommodated well in the Data Architecture.

c In the OBM memorandum, this architecture

is called an Applications Architecture.

We have changed the name because we

have already used the word application

to describe a type of system.

d The Software Architecture and Data

Architecture together could be viewed as

the definition of an Information Systems

Architecture. In fact, this composite

architecture would appear to be a much

better candidate to be named Applications

Architecture.

e The Technology Architecture includes

components such as hardware platforms,

operating systems, database management

systems, networking software, and the

communications infrastructure.

The Technical Reference Model is a

comprehensive list of all the generic IT

services that are available to an enterprise.

The list includes items such as:

• Data interchange services

• Data management services

• Graphics services

• Directory management services;

• Network services

• Operating system services.

The Technical Reference Model groups

the services into logical classifications,

rather than identifying specific products

or solutions (see TOGAF [v] for an

example of a technical reference model).

The Standards Profile is a collection of

standards that fully define the services

identified in the Technical Reference

Model. Standards are fundamental to the

achievement of interoperability between

systems. The standards are often classified

in the same way as the services identified in

the Technical Reference Model. Internally

developed guidelines, de facto standards

and formal international standards can all

be included in the Standards Profile.

In this article we have introduced the basic

building blocks of our extreme architecture

framework.

References
1 Brooks Jnr, Frederick P., The Mythical

Man-Month, 1995, Addison-Wesley.

2 Foote, B. and Yoder, J., ‘Big Ball of

Mud’, Pattern Languages of Program

Design 4, 1999, Addison-Wesley.

3 MacDonald, Ean, Notes on a

conversation about building

architecture. Perth, Western Australia.

October 2003.

4 Zachman, John A. ‘A Framework for

Information Systems Architecture.’,

IBM Systems Journal, vol. 26, no. 3,

1987, IBM. Available

http://www.zifa.com/

[2002, 1 June].

5 The Open Group Architecture

Framework (TOGAF), Version 8,

‘Enterprise Edition’, 2002, The Open

Group. Available at

http://www.opengroup.org/

products/publications/catalog/

i912.htm

About the Authors
Floris Gout gained his Bachelor of

Applied Science (Information Science) at

Edith Cowan University in Perth,

Australia. Whilst studying at ECU he

worked at the University of Western

Australia, building research databases for

epidemiological studies. Floris was then

employed at the Department of Justice

from 1991 till 1999. He became Data

Administrator and was Project Manager

for its first data warehouse. Floris has

been an independent contractor since

1999 and he is still enjoying new and

creative challenges. He can be contacted

at floris@floris.com.au

Phil Robinson has been involved in the

planning, analysis and implementation of a

diverse range of business, scientific and

technical information systems. Phil is an

experienced workshop facilitator and has

led numerous workshops in the course

of his consulting assignments. Phil

has presented training courses for

organisations in Australia, Thailand, Hong

Kong, Singapore and Indonesia. As well

as presenting courses, Phil has authored

numerous courses for industry and three

University units. He has also had two

books published on programming Apple

computers. The books were published in a

number of countries including the USA,

UK and as translations in Germany and

France. More recently, he co-authored two

award-winning articles describing an

original organisational theory. He can be

contact at Lonsdale@iinet.net.au

This paper represents a major collaborative

effort that organises not just the ideas of

the two authors but also the many inspiring

people they have worked with.

This article was originally printed in the

AUSOUG’s Foresight magazine.

