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0. Abstract

Moving to a garbage-collected environment in the Common Language Runtime has, for the most part, made memory leaks a problem of the past. However, the lack of deterministic finalization implied by the garbage collection scheme makes management of non-memory resources more difficult. The C++ community has found that the “resource acquisition is initialization” [1] idiom is very effective in managing those resources that need to be freed as soon as possible. We added reference counting to the Shared Source Common Language Infrastructure to regain deterministic finalization, and to find out what the penalties would be for this extra memory management.

1. Introduction

This paper started as a sort of dare. When Microsoft first revealed the Common Language Runtime (CLR) to the world in 2000, one of their stated goals was to make programming easier. One area of programming pain that was specifically targeted by the CLR was memory management. To the C++ developer community, this pain was well understood. Every allocated block of memory or resource must be freed exactly once. Every C++ developer has spent hours tracking down memory leak bugs at some point in their career.

The C++ style of manual memory management has another, more subtle drawback. Since all allocations must be freed, the decision of who owns, i.e. is responsible for freeing, an allocated object or resource becomes paramount in the design of any C++ code, particularly in reusable libraries. Consider this simple code:

User newUser = AuthenticateUserByName(userName, password);

Code like this becomes loaded down with many design decisions that are completely immaterial to the actual purpose of the function or object [2]. In the sample above, the User object is returned by value. This means that the object is copied at least once (absent certain compiler optimizations). Plus, it means that if the function wanted to return a subclass of User, that object would be sliced at runtime back to its base class.

To avoid slicing and extra copies, functions often return their value by pointer instead. But then the question becomes: who is responsible for freeing the returned object? The caller usually has to do this, but what if the object came out of a shared pool? And what if the caller simply forgets?

The C++ community has created ways to be more explicit about pointer ownership (the std::auto_ptr<> [2] template is one example) but they have subtle traps that the inexperienced and inattentive often fall into. And even if you get it right, somebody who wrote a component you’re using probably didn’t, meaning hours or days of fruitless debugging of somebody else’s code.

As a result of these issues, the CLR does not rely on manual memory management. Instead, all memory is garbage collected automatically. Developers no longer need to worry about any calls to free/delete/etc. This was a great step forward for robustness and ease of development.

However, the CLR garbage collector (GC) didn’t please all Windows developers. Memory management is just a subset of the more general resource management problem (a resource is anything that must be explicitly freed when it is no longer needed). Memory is a unique type of resource in that it is usually plentiful on most machines targeted by the CLR, and freeing it just returns that block of memory to the free memory pool; there’s nothing else that needs to be cleaned up. Also, memory is allocated often in most programs. Other resources, like file handles, sockets, or database connections, are quite different. Waiting to close a database connection will eventually cause connection failures, or possibly cost lots of money (to buy more client licenses). Waiting to close sockets will result in refusal to accept more network connections. The only way to get the GC to clean these resources up earlier is to force an entire collection, which often results in very poor performance.

It turned out that the C++ community has a good way to deal with these kinds of resources. Taking advantage of the semantics of C++ objects on the stack, the “Resource Acquisition Is Initialization” (RAII) idiom says that resources should be allocated in an object constructor and freed in a destructor. Since the destructor fires as soon as the object goes out of scope, the resource will be freed as soon as it is no longer needed.

Certain members of the Windows developer community (most notably one of the authors of this paper) [3] expressed some concern that with the CLR, we were just trading one kind of leak for another. We no longer needed to free objects and memory, which is great. However, we have to remember to call the IDisposable.Dispose() method to notify the object that it’s time free its non-memory resources. Add to this the presence of exceptions as a standard error reporting mechanism in the CLR and you end up with code that’s a great tangle of try – finally blocks to do proper resource management in most .NET languages (like Visual Basic .NET) or the somewhat simpler “using” block in C#.

However, even the C# “using” block makes this a matter of contentiousness on the part of the object caller, which becomes very difficult when it comes to objects that have shared or ambiguous lifetimes. For example, when your code replaces a form’s icon, who’s responsibility is it to dispose of that icon? If your code does it, the original creator of that icon may expect it to be there later, leading to the .NET equivalent of the C/C++ construct known as a dangling pointer. Conversely, if your code doesn’t dispose of the icon, it may well not be disposed off for the life of the process, leading to a resource leak until the GC gets around to cleaning up the object’s memory, allowing the object to dispose of its own resources non-deterministically.
There is one form of memory management that preserves the deterministic finalization semantics of C++: reference counting. [4] When asked whether reference counting was considered as part of the CLR GC, Brian Harry from the Microsoft CLR team responded with an in-depth analysis of the decisions behind the choice of the GC algorithm in the CLR. [5] Reference counting was dismissed due to performance issues and the circular reference problem (a well-known problem with ref-counting that keeps nominally unreferenced objects in memory, causing a resource leak).
One of our esteemed authors suggested at this point “how about combining garbage collection and reference counting?” [6] The response from Brian Harry was “We haven’t tried it, but we’d be interested in the answer.”

With the release of the Shared Source Common Language Infrastructure (SSCLI) source code, there was an opportunity to find out.

1.1. Memory Management Under Reference Counting

Reference counting is one of the simpler methods of automatic memory management. Each object on the heap keeps a count of the number of references there are to it. When the reference count goes to zero, the object knows that it is no longer in use, and can be freed.

Reference counting was chosen as the memory management system for Microsoft’s Component Object Model (COM) because of this simplicity. [7] Any language or runtime can implement reference counting with little difficulty. However, it does require that every modification of a pointer to a heap object also manipulate the reference count on that object. In C++, this is typically handled using smart pointer classes like ATL’s CComPTR<T> [8] class. In languages with a runtime engine like Visual Basic, the runtime handles these reference count manipulations automatically. This has the nice property of preserving deterministic finalization; objects on the heap are freed immediately when their reference counts go to zero.

There is one serious disadvantage to standard reference counting: it cannot deal with circular references. For example, consider an object model of an email client, with messages stored in folders. Each folder is represented as an object. Each email message is represented as an object. Folders contain messages, and each message has a reference to its containing folder. The following UML sequence diagram shows what happens in this case:
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The folder has a reference to the message, so the message’s reference count is 1. The message has a reference to the folder, so the folder’s reference count is (at least) 1. No matter what is done by clients of the folder and message objects, their reference counts will never go to zero due to this cycle. As a result, after all the external references are gone, the two objects will live forever in leaked-memory limbo, clutching at each other’s throats.

In this example it’s easy to see the cycle and deal with it. In more complex situations it can be very difficult to find and fix such cycles. It fact, it’s the authors’ experience that fully half of all bugs in an unmanaged, ref-counted system result in finding and removing cyclic ref-counting problems and other memory-related issues, which is why Microsoft chose to go with reference-tracking garbage collection in the CLR in the first place.
1.2. Memory Management Under Reference Tracking
Dealing with circular garbage requires a reference-tracking collector rather than reference counting. [9] Rather than tracking references one by one via reference counting, a reference-tracking collector finds the live objects by searching for pointers starting on the stack and global variables, and following found pointers to mark each object as found. Pointers in each live object are then followed to mark other live objects, and so on until all pointers have been traced. At that point, any object that wasn’t marked as live by the trace is garbage and can be cleaned up.

Implementing reference tracking is much more difficult than reference counting. There are many variations of garbage collectors: mark and sweep, copying, generational, incremental, and so on, all with different performance and overhead characteristics. The collector also needs to know the structure of objects so that it can find the pointers within the object on the heap. Also, if an object needs extra cleanup actions (a finalizer or destructor) actually running finalizers can be difficult to implement. Finalizers can also affect the garbage state of object; a finalizer can “resurrect” formerly garbage objects by adding a reference to it.

Memory management under a garbage collector is much easier than manual memory management. You no longer have to worry about freeing memory; it just goes away when the collector runs. However, when the collector run is a question. A naïve implementation may wait until memory is full before doing a collection, which can result in long pauses in the run of a program. In some environments, the collector may not run at all.

With memory, this is no big deal. However, with other resources like file handles and sockets, it becomes a problem.

1.3. Combining Reference Counting and Reference Tracking
Ideally, what is needed is a combination of the deterministic finalization characteristics of reference counting and the guaranteed cleanup of reference tracking. Consider the following C# code:

using System;

namespace FinalizerTest {


class FinalizerObj {



private int n;



public FinalizerObj( int n ) {




this.n = n;




Console.WriteLine("Created Finalizer object {0}", n);



}



~FinalizerObj() {




Console.WriteLine("Finalizing finalizer object {0}", n);



}


}


class TestApp {



public static void Main() {




for( int i = 0; i < 5; ++i ) {





LeakAnObj(i);




}



}



static void LeakAnObj( int i ) {




FinalizerObj obj = new FinalizerObj(i);



}


}

}

When you run this under the desktop CLR, you get something like this output:

Created Finalizer object 0

Created Finalizer object 1

Created Finalizer object 2

Created Finalizer object 3

Created Finalizer object 4

Finalizing finalizer object 4

Finalizing finalizer object 0

Finalizing finalizer object 3

Finalizing finalizer object 2

Finalizing finalizer object 1

The order of finalization has no relation to the order of construction. Ideally, what we’d like is this:

Created Finalizer object 0

Finalizing finalizer object 0

Created Finalizer object 1

Finalizing finalizer object 1

Created Finalizer object 2

Finalizing finalizer object 2

Created Finalizer object 3

Finalizing finalizer object 3

Created Finalizer object 4

Finalizing finalizer object 4

When the created objects go out of scope, they get their finalizers run immediately.

It seems impractical at first glance to use both reference counting and reference tracking simultaneously. Just managing the free memory list would get extremely complicated, and what happens when the garbage collector needs to move memory blocks around? But there’s an important realization to make here that makes the problem tractable: we only care about when the finalizers run. It doesn’t really matter when the memory gets freed. The garbage collector does just fine with memory.

So the goal is to provide an implementation of reference counting on top of the CLR garbage collector. The reference counting will be used strictly to determine when to run the finalizer. The GC will be responsible for freeing memory as usual, as well as running the finalizers for any objects that were missed due to reference count cycles. In the common case of non-circular data structures, we gain deterministic finalization without having to write any special code. When there is a reference count cycle, we’re no worse off than we were before, as the GC will eventually run the finalizer.

2. Implementation

2.1. Implementation Goals

The goal of this project was to provide a proof-of-concept implementation to see if reference counting was feasible to implement, and what the costs (in performance and memory usage) would be compared to the non-reference counted SSCLI. The addition of reference counting was to be as transparent as possible to application code. As such, the following priorities were chosen:

· A simple-as-possible implementation. Optimizations are certainly possible (and possibilities are discussed below), but they were not pursued in this implementation.

· No changes to the compilers were done. Requiring the compilers to produce AddRef and Release calls brings back the potential for reference counting errors due to compiler bugs, and worse, objects could behave differently depending on what compiler was used to create them. To avoid this all reference counting was done within the execution engine and Just-In-Time (JIT) compiler in the SSCLI.

Implementation originally started with the Beta release of the SSCLI code, and was later ported over to the release version.

2.2. Reference Count Management

The first thing to consider when adding reference counting is when to increment and decrement the reference counts. Since all values in CLR Intermediate Language (IL) go through the evaluation stack, the following reference counting rules were devised:

· Whenever an object reference is placed on the stack, its reference count is incremented (AddRef).

· Whenever an object reference is moved from the stack into memory (be it a local variable, argument, or a field of another object), the object reference being overwritten has its reference count decremented (Release). An AddRef does not need to be done in this case, because all IL instructions that move a pointer off the stack also remove that value from the stack. Since the pointer was AddRef’ed when it was placed on the stack, the reference count is already correct.

· Whenever an object reference is destroyed off the stack (rather than being stored elsewhere) a Release must be done on the object.

· When an object’s reference count goes to zero, it is finalized, and then all of its contained references are Released.

· Function arguments do not need an additional AddRef, as all function arguments get pushed on the stack before the call, and as such have already been AddRef’ed. However, these arguments must have Release called on them when the function returns, either via the normal return or an exception.

· Value types on the stack do not need individual reference counts; instead, any contained references inside the value type are AddRef’ed and Released individually when the value type is copied or destroyed respectively. Boxed value types have their own reference count like any other reference object.

One thing to note about these semantics is that they are slightly different from those that C++ developers are used to. IL does not preserve scopes within functions (for example, the body of a for-loop), so we cannot trigger on the end of a non-function scope to cause a Release. For example, consider the following:

void ExampleFunction() {


if( someCondition() ) {



Resource r = Resource();


} // r is destroyed here in C++


DoSomethingLong();

} // r is not destroyed until here in ref-counted SSCLI

In our implementation of ref-counting in the SSCLI, this code will destroy intermediate objects at different times as noted in the comments. This difference was considered acceptable; at worst, the resources are cleaned up at the end of the scope even if the developer forgot to put in a using {} block. Future implementations could do deeper analysis of the IL or take advantage of liveness hints output by compilers to do earlier releases, possibly even doing a release even sooner than end of scope.

2.3. Storing the Reference Count

One thing that was surprisingly difficult was finding memory to store the reference count itself. A 32-bit integer was used for the reference count due to simplicity of implementation, but where to get those 32 bits?

An obvious choice would be to add the reference count to either the ObjHeader or Object classes in the SSCLI VM implementation. Unfortunately, the obvious choice was countered due to the implementation of the SSCLI. There are several places in the SSCLI code that depend on the exact memory layout of these objects, and many, many assertions failed when these classes are tampered with.

It turned out, however, that placing the reference count at the end of the object’s data was possible. Since the class loader lays out the member data dynamically, it was fairly easy to add four bytes to each class’s m_BaseSize field in the MethodTable object to allocate space for the reference count. Unfortunately this meant that the reference count for each object is not at a constant offset from the beginning, causing some extra overhead to calculate the position of the reference count every time it needs to be modified.

An artifact of the current implementation is that it does not work with variable sized object, specifically strings and arrays. In the current implementation, neither strings nor arrays get reference counted at all. For strings this is not a problem, as they don’t have finalizers anyway. For arrays it depends on the type stored in the array.

In addition to adding the storage space, a flag was added to the MethodTable object to allow an easy check to see if the object in question required reference counting. The flag was set in the class loader. The actual AddRef and Release functions were implemented as methods of the Object class in C++.

2.4. Reference Counting in the JIT Compiler

To actually do the reference counting, the JIT compiler was modified to output AddRef and Release calls at the appropriate time. The opcodes were modified based on how they affected the evaluation stack. For example, the LDARG and LDLOC opcodes both take a value out of memory and place it on the stack. These are both JIT compiled by the DO_LDVAR function. This function was modified to the following:

FJitResult FJit::compileDO_LDVAR(OPCODE opcode, stackItems* varInfo)

{

    OpType          trackedType;

    TYPE_SWITCH_PRECISE(varInfo->type, emit_LDVAR, (varInfo->offset));

    // CCT - call addref if it was an object loaded onto the stack

    if( varInfo->type.enum_() == typeRef )

    {

        callInfo.reset();

        void *addRefHelper = jitInfo->getHelperFtn(CORINFO_HELP_ADDREF, NULL);

        emit_DUP_PTR();

        emit_callhelper(addRefHelper, sizeof(void *));

    }

    trackedType = varInfo->type;

    trackedType.toFPNormalizedType();

    pushOp(trackedType);

    return FJIT_OK;

}
The section in boldface was added. First it checks if the variable being accessed is a pointer to an object on the heap. If so, it emits a call to the addRefHelper JIT helper function to actually perform the addref operation. The emit_DUP_PTR is a macro that was added that calls emit_DUP_I4 on 32 bit processors and emit_DUP_I8 on 64 bit ones.

The AddRef helper function looks like this:

HCIMPL1( void, JIT_AddRef, Object *obj )

    if( obj != 0 )

    {

        obj->AddRef();

    }

HCIMPLEND

The HCIMPL macros are used to set up the proper helper function stack frame. The real work is actually done in the AddRef method implementation. There are also helper functions for Release, and for InitRefCount, which is called when the NEWOBJ opcode is JITted. Initializing the reference count on the object to 1 was attempted via the various memory allocators, but there were too many paths through the code to track them all down reliably. Having the JITter do this initialization was much simpler.

The code to walk through an object at finalization time was placed in the implementation of the Release function. It was reasonably easy to implement, since the GC already has code to walk an object looking for pointers. The go_through_object macro was borrowed (and tweaked slightly) to call release on each contained pointer. This implementation resulted in another difference from C++ semantics: in C++, objects are destroyed bottom-up: the last object created is the first one destroyed. In the refcounted SSCLI, the releases are done top-down: the first pointer in memory is the first to be freed. This was not considered a serious problem, and the go_though_object macro was sufficiently complicated (its definition is 42 lines long) that trying to do the walk backwards through the object was not attempted.

3. Current Status

At this time, the reference counting has been added to the following opcodes in the JIT: LDVAR, LDARG, NEWOBJ, STLOC, STARG, and the function return epilog (to release local variables and arguments). Reference counting of contained objects when an object is finalized is also in place. While this is by no means all of the IL opcodes, it was sufficient to get most usages of deterministic finalization working.

Under this implementation, no changes are needed to existing IL code; everything already written for the SSCLI continues to run as before. Even code that uses IDisposable or has finalizers runs unchanged. The only real difference is that finalizers are run as soon as the object in question becomes garbage (except when involved in a reference counting cycle) rather than having to wait until the GC does a collection.

Even objects that have references contained in other objects are correctly finalized. When an object’s refcount goes to zero, its finalizer is run, and then all its contained references are released (decrementing each object’s reference count). If any of those objects are also reduced to a zero reference count, that object is in turn finalized and then its contained objects are released.

This offers a chance to simplify client code immensely. No more are try-finally blocks needed to ensure timely cleanup of external resources. Finalizers are, for the most part, no longer needed unless the class in question wraps an unmanaged resource. 

Unfortunately, as nice as the programming model is provided by our hybrid ref-counting/ref-tracking implementation, it’s unlikely that anyone will be willing to put up with the performance degradation our implementation currently provides. We had plans for all kinds of fun tests, but ultimately we never got past the first one satisfactorily: compiling the SSCLI itself. During the compilation of the SSCLI, after the native core code is built, the Base Class Libraries and other supporting code are compiled using the SSCLI C# compiler, which uses our code. This process was significantly slowed with our non-optimized ref-counting implementation. Further, we were unsuccessful at attaching Compuware’s profiling tools, even though they provided us a free copy and worked extensively with us to find out just what the problem was.
So, the bottom line is that the programming model is exactly what we’d hoped it would be, but further work needs to be done to study what’s causing the slow-down and to determine whether a hybrid GC model can be efficiently implemented.

4. Future Directions

The current implementation for SSCLI 1.0 [10] is available for download [1]. For those who would like to continue or improve this project, in addition to finishing the implementation, several possible optimizations present themselves:

· Inline the calls to AddRef and Release in the JITter. This would remove two function calls from each refcount manipulation.

· Place the reference count at the beginning of the Object type, where it should have been in the first place, removing another function call (to FindRefCount).

· Be more intelligent about what objects get reference counted. A set of conditions under which objects do not need reference counts were named “Brad’s Rule” in honor of the Brad Wilson, who formulated the conditions. If a class is sealed, and contained no references to other objects, it doesn’t need reference counting under any conditions.

· Dynamically JIT the “object sweep” function, rather than finding the contained pointers within each object at finalization time.

· Provide some sort of post-JIT refcount optimization to eliminate redundant addref/releases.

Whether any of these optimizations would result in the speedup required remains to be seen.

5. Conclusions

Having deterministic finalization semantics are a useful addition to the CLI programming model. It is possible to combine the existing garbage collector for memory management with reference counting to know when objects become garbage and to trigger the finalizer at that time. However, Further work needs to be done it make this happen in an efficient manner.
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