
As consultant-educators, we need to be able to quickly
grasp an organization’s architecture at different levels
of abstraction. We have created a new framework, the
Extreme Architecture Framework (XAF), in order to do
just that. The XAF presents a unified view of human
activity and software systems from the perspectives
of business, information, and technology. The unified
view strikes a balance between architectural perfection
and the chaos that inevitably ensues when there is no
architecture.

Of course, enterprise architecture (EA) frameworks
already abound, and EA expert Jaap Shekkerman offers
a useful inventory of the notable examples [13]. In pre-
senting “yet another framework,” it is not our intention
to reinvent the wheel but rather to synthesize some of
the best ideas in the field and inject a healthy dose of
experience. The XAF has evolved over a period of time
and has been heavily influenced by our consulting
assignments. Early on, we sought to emulate the ideas
advocated by Extreme Programming (XP) [1]. XP is a
lightweight but highly rigorous approach to software
development in which well-established best practices
have been taken to the “extreme.” For example, testing
is good, so test first; code reviews are good, so pair
program, and so on.

In similar fashion, the XAF is a lightweight, pragmatic
approach to EA. It is lightweight because it removes
the many “roles” (owner, planner, etc.) contained in
some frameworks but keeps the architectural perspec-
tives accepted by others. It is pragmatic because it
ensures these perspectives are kept in all system views
(the system views give architectural depth). The XAF
shows all major work products needed by the archi-
tectural activities of governance, planning, and
development.

The XAF answers the two questions our clients (IT
managers and CIOs) ask most often:

1. “Which elements of the enterprise do I need to be
aware of and understand?”

2. “Which elements am I responsible for, and which do
I need to manage?”

ARCHITECTURE

A clear and simple definition of what constitutes
architecture can be difficult to achieve. We like this
definition of building architecture provided by retired
architect Ean MacDonald:

Architectural design is the simultaneous resolution and
solution of the various architectural problems; that can
include location, aspect and prospect, sun, wind, and
weather, materials and method, finance, function, and
form, to which may be added a dash of flair that can
make the structure a work of art. [11]

In addition to noting that architecture is art, Roger
Pressman describes architecture as representations of a
software system that allows software engineers to:

(1) Analyze the effectiveness of the design in meeting its
stated requirements, (2) consider architectural alternatives
at a stage when making design changes is still relatively
easy, and (3) reduce risks associated with the construction
of the software. [12]

Based on the opinions of these two architects, architec-
ture provides both functional design and aesthetic
appeal. It is useful to further explore metaphors that
equate buildings with software systems and urban
landscapes with enterprises.

BUILDINGS AND CITIES, SOFTWARE AND ENTERPRISES

Frederick Brooks cites the Gothic cathedral at Reims as
a triumph of architectural vision [2]. Eight generations
of highly skilled builders sacrificed their own ideas in
order to maintain the design integrity. Brooks offers the
triumph of Reims Cathedral as a sort of Holy Grail for
software developers. In stark contrast, Brian Foote and
Joseph Yoder, authors of the Big Ball of Mud pattern, use
the metaphor of a shantytown as the most frequently
adopted software architecture. In this view, buildings

©2006 Cutter Information LLCCUTTER IT JOURNAL March 200616

XAF: A Minimalist EA Framework for an Agile
Environment
by Floris Gout and Phil Robinson

RADICAL MODERATES, UNITE!

17Get The Cutter Edge free: www.cutter.com Vol. 19, No. 3 CUTTER IT JOURNAL

are “built from common, inexpensive materials and
simple tools … using relatively unskilled labor” [4].

We must take care, however, not to mix metaphors.
Brooks’s Reims Cathedral metaphor is based on the
architecture of a single building, while Foote and
Yoder’s shantytown metaphor is simultaneously based
on the architecture of buildings and a chronic lack of
urban planning. Urban planning involves laying out
the streets and providing services. Residents are free to
build whatever style of house they desire so long as it
conforms to the building standards and guidelines laid
down for their area.

Canberra, Australia, which was designed by Walter
Burley-Griffin, is a pinnacle of urban planning. In con-
trast to Canberra, a shantytown represents an extreme
lack of urban design, where space is utilized with
adverse effects on land and residents. Reims Cathedral
and Canberra reflect the values of “architecture as
art,” glorification, and national pride. At the opposite
extreme, the shack and the shantytown reflect architec-
ture as non-art, squalor, and social disenfranchisement.

Confronted by these two extremes, we found ourselves
drawn to what Buddhism calls the “middle path,”
which, “avoiding the extremes, gives vision and knowl-
edge and leads to calm, realization, [and] enlighten-
ment” [15]. Most architects and urban planners spend
the majority of their time following the middle path,
designing residential suburbs. The suburban house
offers the perfect metaphor for this middle-path
approach, situated as it is between the two extremes
of perfection and chaos.

SYSTEMS AND INTEROPERABILITY

While useful, building and urban planning metaphors
have significant limitations. Over time, buildings inter-
act minimally with their environment. Services and
access roads change infrequently.

In contrast to the static nature of buildings, human
activity and software systems are highly dynamic and
interactive. The design integrity is determined by fac-
tors that are far more abstract and often difficult to
measure.

Fundamental to the XAF is the idea that an enterprise is
a collection of human activity and software systems:

An industry sector is a system of interacting enter-
prises that are all engaged in a similar type of activity.

An enterprise is a collection of individuals perform-
ing systematic and purposeful activities in support of
a well-defined mission.

A business process is “a sequence of activities that
produce outputs of value to the customers of the
process” [6].

A software application is a mechanism for packaging
and physically deploying a collection of software
functions.

A software component is a piece of software that can
be easily replaced by another piece of software and
can potentially be reused in a number of different
applications.

The hierarchy of system types, shown in Figure 1, is
often mistaken for a hierarchy of systems (i.e., industry
sectors are composed of enterprises, enterprises are
composed of business processes, and software applica-
tions are composed of software components). While this
perspective was convenient in the past, the contempo-
rary business environment now invalidates it:

Business processes are commonly outsourced
and thus are not nested inside a single containing
enterprise.

People outside an enterprise, such as customers,
agents, and suppliers, now interact directly with
the enterprise’s software applications. Software appli-
cations are not nested inside business processes.

Modern software development techniques emphasize
reusable software components. A reused software
component is not nested inside a single software
application. The trend toward Web services means
that an entire industry sector can use the services
provided by a single software component, thus inval-
idating the entire hierarchy of systems.

Industry sector

Enterprise

Business process

Application

Component

Human activity systems

Software systems

Figure 1 — Enterprise systems.

©2006 Cutter Information LLCCUTTER IT JOURNAL March 200618

We believe that it is more realistic to view the human
activity and software systems of an enterprise as a num-
ber of independent and overlapping systems (see Figure
2). Independent, overlapping systems are able to inter-
act with each other in an unrestricted manner, leading
to the overriding requirement for interoperability.
Interoperability, in turn, requires a high level of struc-
tural integrity. Needless to say, high levels of interoper-
ability are unlikely to be found in systems that resemble
a shantytown.

ARCHITECTURAL VIEWS

Describing a large building, town, or city is a complex
task. Architects and urban planners present their
plans using a number of complementary views. One
view could show the proposed subdivision of land.
Additional views might include transportation, public
amenities, or environmental concerns.

For similar reasons, enterprise architectures are also
typically presented as a number of complementary
views. Perhaps the best-known set of architectural

views are those described in the Zachman Framework
[17]. The US National Institute for Standards and
Technology (NIST) architecture framework describes
a different set of architectural views [3].

The OMB Reference Architecture

Following the enactment of the US Clinger-Cohen Act,
the NIST architectural views were endorsed by the
Office of Management and Budget (OMB). The OMB
reference architecture has three major components, as
shown in Figure 3.

The enterprise architecture consists of five architectural
views that together describe the enterprise:

Activity architecture1 (the high-level business activi-
ties and workflows)

Information architecture2 (supports the business
activities)

Software architecture3 (supports the activity and
information architectures)

Data architecture4 (describes the logical and physical
structure of the software-maintained data stores)

Technology architecture5 (describes the technical
environment in which software executes)

The technical reference model is a comprehensive list
of the generic services provided by the enterprise’s
technology infrastructure and includes items such as
data interchange services and data management ser-
vices, among others. The Open Group Architectural
Framework (TOGAF) includes a detailed example of a
technical reference model [14].

The standards profile is a collection of standards that
fully specify the generic services identified in the
technical reference model. Standards are fundamental
to interoperability between systems.

Industry sector

Enterprise

Business
process

Business
process

Enterprise

Industry
sector

Application Application Application

Component

Component

Component

Figure 2 — The nature of human activity and software systems.

1In the OMB memorandum, this architecture is called the business process architecture. We have changed the name because we have
already used the phrase “business process” to describe a type of system.

2It is common practice either to combine the information architecture with the activity architecture and call it a business architecture or
to include information requirements in the data architecture. We do not like the first approach, as the phrase business architecture
sounds rather vague and nebulous. As far as the second approach is concerned, we feel it does not highlight the fact that information is
related to business activity while data is more closely related to information technology. In addition, there are issues associated with
information architecture that are not accommodated well in the data architecture. Nonelectronic records are often a component of the
information requirements for a business activity. However, the value of including nonelectronic records in a data architecture is ques-
tionable because they are not manipulated and stored using information technology.

3In the OMB memorandum, this architecture is called an applications architecture. We have changed the name because we have already
used the word “application” to describe a type of system.

4The software architecture and data architecture together could be viewed as the definition of an information systems architecture. In
fact, this composite architecture would appear to be a much better candidate to be named applications architecture.

5The technology architecture includes components such as hardware platforms, operating systems, database management systems, net-
working software, and the communications infrastructure.

19Get The Cutter Edge free: www.cutter.com Vol. 19, No. 3 CUTTER IT JOURNAL

THE EXTREME ARCHITECTURE FRAMEWORK

The XAF is a matrix of independent, overlapping sys-
tems and OMB architectural views. Each cell in the
matrix contains a number of architectural elements
to organize architectural content.

We chose the architectural views from the OMB enter-
prise architecture for the XAF because they are easy to
understand. The OMB reference architecture does not
exhaustively define an enterprise. A full understanding
of an enterprise must include elements such as business
strategy, culture, and values. These facets will influence
the architecture in much the same way that financial,
political, and social factors influence urban planning.
However, we are seeking a minimalist framework.

Figure 4 shows the complete XAF with the 18 architec-
tural elements added to the framework. Some of the
cells have been grouped together when they share simi-
lar content across a number of rows of columns. The
most obvious examples are the grouping of Sector,
Enterprise, and Process into a single row representing
human activity systems and the grouping of the entire
Technology column into a single cell.

A necessarily brief description of the 18 architectural
elements is given below. The high-level descriptions
facilitate the mapping of the XAF to definition stan-
dards such as the Unified Modeling Language or the
Integrated Definition Methods series.

Activities: describe the business activities performed
within a sector, enterprise, or business process

Workflows: describe the flow of physical objects and
information between business activities

Subject areas: classify and group information
requirements, business objects, and storage require-
ments that have a common theme

Information requirements: describe the information
required or produced by an activity

Functional areas: classify and group functional
requirements, nonfunctional requirements, interface
requirements, and use cases that have a common
purpose

Enterprise architecture

A
ct

iv
ity

In
fo

rm
at

io
n

S
of

tw
ar

e

D
at

a

T
ec

hn
ol

og
y

Technical reference model

Standards profile

Figure 3 — The OMB Architecture Framework.

Sector

Enterprise

Process

Application

Component

Activity Information Software Data Technology

Activities

Workflow

Subject areas

Information
requirements

Functional
areas

Business
objects

Use cases
Interface

requirements

Functional
requirements

Nonfunctional
requirements

Storage
requirements

User interface
Architecture

Code
Schemas

Networks

Platforms

Frameworks

Figure 4 — Extreme Architecture Framework.

©2006 Cutter Information LLCCUTTER IT JOURNAL March 200620

Business objects:6 represent the concepts of interest
within the Sector, Enterprise, or Process

Use cases: describe the interaction of a software
application between an actor and the software [8]

Interface requirements: describe the application’s
interface with a user or another application

Functional requirements: describe the mandatory
capabilities, actions, and behavior of a proposed soft-
ware application

Nonfunctional requirements: describe the require-
ments of a proposed software application that are not
related to its capabilities, actions, or behavior; e.g.,
quality attributes (performance, usability, security,
etc.) and application constraints (software platform,
external environment, etc.)

Storage requirements: describe data that will be per-
manently stored (persistent data) and may include
detailed data element definitions.

User interfaces: the screens, reports, and Web pages
that a user interacts with

Architecture: various high-level views of a software
application7

Code: the human-readable source code that defines
the software and binary code that is executed

Schemas: the electronic data store in terms of the
records (or tables) and relationships between the
records

Networks: the mechanisms used to connect plat-
forms, which permit the transfer of data and invoca-
tion of remote services

Platforms: the hardware, firmware, system software,
and middleware required to deploy and execute a
software application

Frameworks: standard component models and/or
reference software architectures such as J2EE or .Net

ARCHITECTURE CONTENT

The body of the matrix can contain different types of
content. The content for an architectural element might
consist of (but is not restricted to):

A model, list, or definition of any of the actual
architectural elements (e.g., a list of the core busi-
ness processes, a list of business objects relevant to a
sector, or a data model for an application)

An assessment or SWOT [Strengths – Weakness –
Opportunities – Threats] analysis of the current state
of an element (e.g., an assessment of data quality
associated with a database). Assessments might also
refer to:

— A potential risk (e.g., low customer satisfaction
associated with a complex business process)

— A potential reward (e.g., a reduction in procure-
ment costs associated with effective data inter-
change with suppliers)

A vision of some future state of an element and how
it will contribute to business strategies and goals (e.g.,
data will be seamlessly transferred between different
business processes)

A strategy or course of action to achieve the vision
(e.g., using a “hub and spoke” architecture strategy to
integrate software applications and facilitate data
transfer)

An underlying principle associated with an element
(e.g., the principles of minimizing data redundancy
and duplication)

The framework as described here contains architectural
representations and planning information. We are cur-
rently experimenting with synthesizing balanced score-
card techniques [9, 10] and planning models described
by the Business Rules Group [5]. Readers familiar with

6Strictly speaking, the “objects” of object orientation have relevance in three places in the framework. The persistent business objects
described here belong in the Data column; business objects that have behavior (as well as state) belong in the Activity column (we actu-
ally don’t recommend that activities be modeled in this way, but some users of the framework may prefer this approach); and software
classes and components belong in the Component row.

7Christine Hofmeister and her coauthors identify views for the underlying conceptual organization, individual modules, organization of
the source code, and runtime deployment of software [7].

Partitioning the framework into rows and
columns provides valuable insight into the
governance and development tasks of EA.

21Get The Cutter Edge free: www.cutter.com Vol. 19, No. 3 CUTTER IT JOURNAL

Radical Project Management [16] will recognize items
common to both the architectural framework and a
business case. The business case contains content for
architectural scope in its project objectives and out-
comes. For example, a business case for an application
would contain objectives for implementing user inter-
actions, interfaces to other applications, functional
requirements, data storage requirements, and technol-
ogy considerations. The application row in the XAF
contains these elements. Any framework must provide
the architectural content items to support the work
products for governance, planning, project manage-
ment, and development.

GROUPING FRAMEWORK CELLS

The framework cells are grouped into the architectural
perspectives and system types. In addition to this “stan-
dard” grouping of cells, the matrix cells can be grouped
in a number of other ways. As we will see, partitioning
the framework into rows and columns provides valu-
able insight into the governance and development tasks
of EA.

Rows: The Systems Development Lifecycle

Grouping the cells into rows reflects the major
disciplines associated with the systems development
lifecycle (see Figure 5).

The business modeling row describes what the enter-
prise does and how its activities are supported by its

software systems. This is the context for the individual
software applications. The requirements definition row
defines the requirements for a single software applica-
tion. The content of this row also reflects typical archi-
tectural content of a requirements definition document.
The software construction row describes the physical
artifacts that together implement a single software
application. Technology is considered at all three levels.

Columns: Enterprise Architecture Governance

The logical choice of names for the columns tends to
reflect the management disciplines frequently tasked
with EA governance (see Figure 6).

The process improvement column includes the elements
that focus on business process reengineering projects or
continuous improvement initiatives. The information
management column includes the elements needed to
properly manage effective use of information. The soft-
ware portfolio management column includes the ele-
ments that define an organization’s software portfolio.
A major concern of those who focus on this column is
integration of disparate custom-developed software and
packages.

The data administration column includes the elements
that define an organization’s electronic databases. This
discipline drives data quality improvement and data
integration initiatives. The infrastructure management
column manages hardware and software platforms, net-
works, and the technical frameworks. While this disci-
pline is concerned with guaranteeing the smooth running

Sector

Enterprise

Process

Application

Component

Activity Information Software Data Technology

Activities

Workflow

Subject areas

Information
requirements

Functional
areas

Business
objects

Use cases
Interface

requirements

Functional
requirements

Nonfunctional
requirements

Storage
requirements

User interface
Architecture

Code
Schemas

Networks

Platforms

Frameworks

Business
modeling

Requirements
definition

Software
construction

Figure 5 — Areas of architecture content.

©2006 Cutter Information LLCCUTTER IT JOURNAL March 200622

of technology infrastructure, it is also responsible for
technology conversion and rationalization projects.

Mapping Business and IT Responsibilities

These disciplines are distributed across the organiza-
tion, and tension between business and IT groups is
commonplace. The reason for the tension becomes
clearer when the responsibility for different columns is
highlighted on the XAF; business groups are usually
responsible for the Activity and Information columns,
while IT groups are usually responsible for the Data
and Technology columns (see Figure 7).

So what of the Software column? It is true that IT actu-
ally constructs the software portfolio. However, one
could argue that business groups must be actively
involved in management of the software portfolio if it is
to meet their needs. We conclude that both groups must
share responsibility for the software portfolio. The
Software column represents the boundary between the
two groups where most benefit will be gained from col-
laboration and joint responsibility; thus it has the poten-
tial to be an “axis of joy.” But in enterprises that cannot
resolve the tension between their business and IT
groups, this column represents an “axis of sorrow.”

Managing Conflict Where Rows Meet Columns

The individual cells of the XAF are where the lifecycle
and management disciplines intersect (see Figure 8).
They also highlight areas where cooperation is required
and conflict is common. For example, the intersection
between the Component row and the Data column
involves interaction between software developers and
data administrators. Many readers will be familiar with
situations in which a software developer designs a data
structure that does not conform to enterprise standards.
Often the developer has compelling reasons to do this,
but it will inevitably bring him or her into conflict with
the data administrator.

The XAF offers a way out of this dilemma by providing
a concrete artifact through which both parties can pre-
sent their arguments while at the same time acknowl-
edging the opposing point of view. For instance, the
data administrator might show how the developer’s
schema needs to be altered to meet an enterprise busi-
ness object model. On the other hand, the developer
could show the data administrator how the schema
would assist in meeting an interface requirement.

Sector

Enterprise

Process

Application

Component

Activity Information Software Data Technology

Activities

Workflow

Subject areas

Information
requirements

Functional
areas

Business
objects

Use cases
Interface

requirements

Functional
requirements

Nonfunctional
requirements

Storage
requirements

User interface
Architecture

Code
Schemas

Networks

Platforms

Frameworks

Process
improvement

Software
portfolio

management Infrastructure
management

Information
management Data

administration

Figure 6 — Management discipline areas of architecture content.

23Get The Cutter Edge free: www.cutter.com Vol. 19, No. 3 CUTTER IT JOURNAL

Sector

Enterprise

Process

Application

Component

Activity Information Software Data Technology

Activities

Workflow

Subject areas

Information
requirements

Functional
areas

Business
objects

Use cases
Interface

requirements

Functional
requirements

Nonfunctional
requirements

Storage
requirements

User interface
Architecture

Code
Schemas

Networks

Platforms

Frameworks

Axis of
joy or sorrow

IT responsibility
Business

responsibility

Figure 7 — Business and IT ownership.

Sector

Enterprise

Process

Application

Component

Activity Information Software Data Technology

Activities

Workflow

Subject areas

Information
requirements

Functional
areas

Business
objects

Use cases
Interface

requirements

Functional
requirements

Nonfunctional
requirements

Storage
requirements

User interface
Architecture

Code
Schemas

Networks

Platforms

Frameworks

Software
construction

Data
administration

Figure 8 — The intersection of disciplines.

©2006 Cutter Information LLCCUTTER IT JOURNAL March 200624

The XAF gives all parties a consistent framework for
identifying and visually mapping out areas of responsi-
bility and shows how one person’s area of responsibility
relates to another. In cases where responsibility is not
clear, it provides a focal point for negotiation. The XAF
is a common place to return to in the case of recurring
disputes.

WHY EXTREME?

How can a framework that evolved out of a search for
the middle path be called “extreme”? The XAF is
extreme because it exaggerates the best aspects of other
architecture frameworks:

The XAF is easy to describe. The framework is based
on a simple five-by-five matrix. The body of the
matrix is populated with just 18 architectural ele-
ments. The framework can be presented on a single
reference card. In contrast, many architecture frame-
works are complex and difficult to describe. The doc-
umentation for TOGAF Version 8 runs to 313 pages
— try getting people’s attention with that!

The XAF encourages an agile approach to architec-
tural work products. Each of the architectural ele-
ments can be described using anything from a simple
bullet-point list to a detailed UML model. In contrast,
many architecture frameworks advocate the creation
of a large number of elaborate and detailed models.
The Zachman Framework identifies no less than 36
“primitive” models.

The XAF unifies a number of disparate project dis-
ciplines. Each area is focused on a particular disci-
pline but retains the context of its relationship to the
other elements. In contrast, we know of architecture
groups that work in splendid isolation. Their elabo-
rate models never make one iota of difference to the
business managers, business analysts, software devel-
opers, or IT infrastructure groups.

The XAF offers a simple, consistent view to the
various parties involved in the management of

enterprise resources. This encourages shared under-
standing between disparate groups by presenting an
area of “common ground” that everyone can under-
stand. In contrast, some frameworks organize models
according to various roles. This tends to encourage
redundant descriptions of elements at different levels
of detail. For example, the Zachman Framework
answers the questions what, why, when, how, where,
and who from the perspective of five different roles.

Enterprise architecture is beset by extremes. At one end
of the spectrum, the would-be builders of corporate
cathedrals will settle for nothing less than perfection. At
the other, the builders of chaotic shantytowns grab the
first solution that comes to hand. The suburban house,
with its connotations of self-reliance, affordability, and
pragmatism, is much more relevant to the modern
enterprise than the abundance, privilege, and order of
Reims Cathedral or the disenfranchisement, poverty,
and chaos found in a shantytown. In dealing with both
software architecture and enterprise architecture, the
Extreme Architecture Framework offers a middle path
for those businesses and IT groups that cannot afford
the comprehensive nature of some published frame-
works and wish to avoid the chaos of not having one
at all.

REFERENCES

1. Beck, Kent. Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, 2000.

2. Brooks, Frederick P., Jr. The Mythical Man-Month: Essays on
Software Engineering. 20th anniversary ed. Addison-Wesley
Professional, 1995.

3. Fong, Elizabeth N., and Alan H. Goldfine. Information
Management Directions: The Integration Challenge. National
Institute for Standards and Technology, 1989.

4. Foote, Brian, and Joseph Yoder. “Big Ball of Mud.” In Pattern
Languages of Program Design 4, edited by Neil Harrison, Brian
Foote, and Hans Rohnert. Addison-Wesley, 1999.

5. Hall, John, Keri Anderson Healy, and Ronald G. Ross (eds.).
The Business Motivation Model — Business Governance in a Volatile
World. Business Rules Group, September 2005 (www.business-
rulesgroup.org/second_paper/BRG-BMM.pdf).

6. Hammer, M., and J. Champy. Reengineering the Corporation:
A Manifesto for Business Change. HarperCollins, 2003.

7. Hofmeister, Christine, Robert Nord, and Dilip Soni. Applied
Software Architecture. Addison-Wesley Professional, 1999.

8. Jacobson, Ivar. Object-Oriented Software Engineering: A Use
Case-Driven Approach. Addison-Wesley Professional, 1992.

We know of architecture groups that work
in splendid isolation. Their elaborate models
never make one iota of difference to the
business managers, business analysts, soft-
ware developers, or IT infrastructure groups.

25Get The Cutter Edge free: www.cutter.com Vol. 19, No. 3 CUTTER IT JOURNAL

9. Kaplan, Robert S., and David P. Norton. The Balanced
Scorecard: Translating Strategy into Action. Harvard Business
School Press, 1996.

10. Kaplan, Robert S., and David P. Norton. Strategy Maps:
Converting Intangible Assets into Tangible Outcomes. Harvard
Business School Press, 2004.

11. MacDonald, Ean. E-mail communication, 5 October 2003.

12. Pressman, Roger. Software Engineering: A Practitioner’s
Approach. 6th ed. McGraw-Hill, 2005.

13. Schekkerman, Jaap. How to Survive in the Jungle of Enterprise
Architecture Frameworks. Trafford Publishing, 2004.

14. The Open Group Architecture Framework (TOGAF)
“Enterprise Edition” Version 8.1 (www.opengroup.org/
architecture/togaf8-doc/arch/).

15. Thera, Piyadassi. The Buddha: His Life and Teaching. Buddhist
Publication Society, 1982 (www.buddhanet.net/pdf_file/
lifebuddha.pdf).

16. Thomsett, Rob. Radical Project Management. Prentice Hall
PTR, 2002.

17. Zachman, John A. “A Framework for Information Systems
Architecture.” IBM Systems Journal, Vol. 26, No. 3, 1987.

Floris Gout was a late starter in information technology. After
eight years as a professional dancer with the West Australian Ballet
Company, he worked in engineering on large iron ore, petroleum,
and gas projects in Western Australia and Malaysia until 1987.

Following those two exciting careers, Mr. Gout earned a bachelor’s
degree in information science and has since worked across industry

sectors in a range of IT roles. His major interests lie in project man-
agement and modeling, and he has modeled systems at the enterprise
and software application levels. Mr. Gout has developed a skill of
reverse-engineering a database and assessing its alignment to busi-
ness objectives and IT governance. His project management interest
focuses on risk and rewards and demonstrating the alignment of an
architectural model to the business case.

Mr. Gout can be contacted at floris@floris.com.au.

Phil Robinson is Lonsdale Systems’ principal trainer and consultant.
Mr. Robinson has worked in IT in a variety of roles since 1975. He
has been involved in the planning, analysis, and implementation of a
diverse range of business, scientific, and technical information sys-
tems. Mr. Robinson is an experienced workshop facilitator and trainer
and has earned a reputation as a lucid and knowledgeable presenter.
He has presented training courses for clients in Australia, Thailand,
Hong Kong, Singapore, and Indonesia.

Mr. Robinson has authored numerous courses for industry and three
university units. He has also published two books on programming
Apple computers, which were subsequently translated into German
and French. More recently, Mr. Robinson coauthored two award-
winning articles describing an original organizational theory and was
appointed to the editorial board of Work Study, the UK journal in
which they were published.

Mr. Robinson has a degree in electrical engineering and has trained as
a group work leader. He has lived and worked in Thailand and speaks
a little (“nid noi”) of the Thai language.

Mr. Robinson can be contacted at E-mail: lonsdale@ii.net; Web site:
www.lonsdalesystems.com.

