

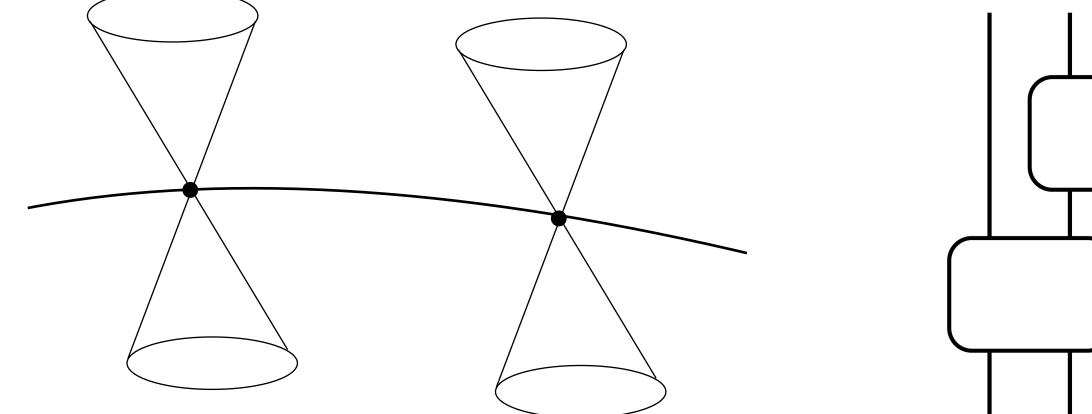
Circuit Locality from Relativistic Locality in Scalar Field Mediated Entanglement

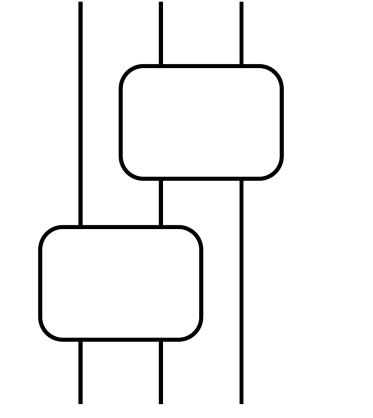
Andrea Di Biagio, Richard Howl, Časlav Brukner, Carlo Rovelli, and Marios Christodoulou

Two notions of locality

A knotty relationship

We normally assume that the world can be carved into subsystems, often using spacetime

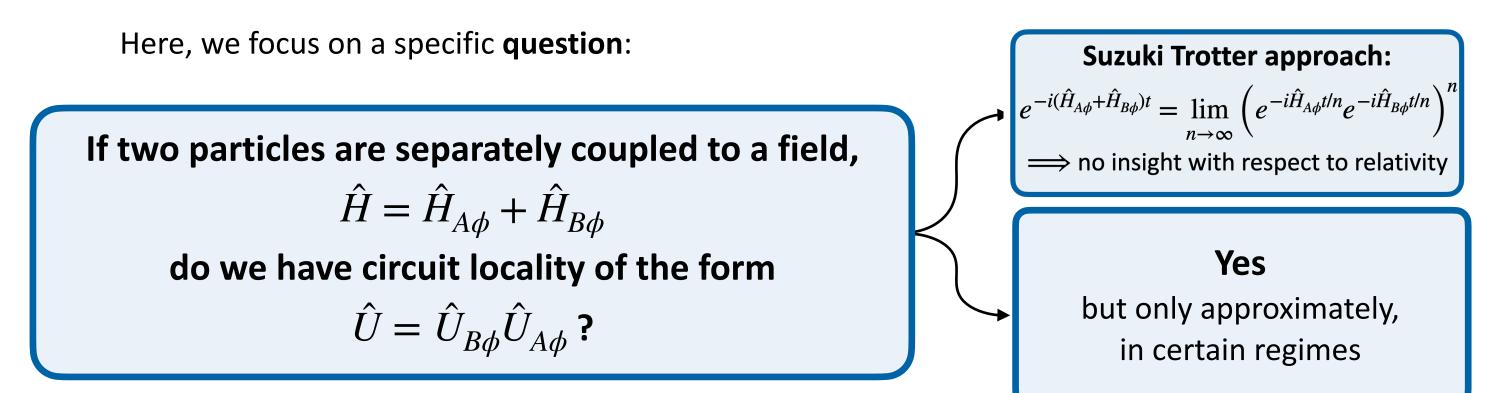




Relativity spacetime regions and metric represented by manifold information travels within lightcones

Quantum Information subsystems and interactions represented by circuits information travels along wires notions (far means separate), or even **relativistic** notions (what I do here cannot immediately influence what happens there). But there are fundamental obstructions to to this idea coming from **QM** and **QFT** (systems are just not localised in space).

The **circuit notion of locality** can only be expected to hold only in certain regimes, and only approximately because of **localisability problems in QFT**. Open problem to map the **emergence** of such widespread notion.



Scalar Field Mediated Entanglement

Setup

two quantum-controlled particles interacting with a field $\mathcal{H} = \left(\mathbb{C}^d \otimes L^2(\mathbb{R}^3)\right)^2 \otimes \mathcal{F}$ $\hat{H}(t) = \hat{H}_A(t) + \hat{H}_B(t) + \hat{H}_0 + \hat{H}_{\text{int}}$ Parametric approximation the qudits drive the particles, the particles drive the field

$$|\Psi(t)\rangle = \sum_{rs} c_{rs} |rs\rangle |\psi_A^r(t)\rangle |\psi_B^s(t)\rangle |\psi_{\phi}^{rs}(t)\rangle$$

particles: $\frac{d}{dt} |\psi_A^r(t)\rangle = -i\hat{H}_A^r(t) |\psi_A^r(t)\rangle$
field: $\frac{d}{dt} |\psi_{\phi}^{rs}(t)\rangle = -i(\hat{H}_0 + \hat{H}_{int}^{rs}(t)) |\psi_{\phi}^{rs}(t)\rangle$
 $\implies \hat{U} = \sum_{rs} |rs\rangle \langle rs | \otimes \hat{U}_A^r \otimes \hat{U}_B^s \otimes \hat{U}_{\phi}^{rs}$

Quantum field, two semiclassical sources (\hat{U} is in desired form if $\hat{U}_{\phi}^{rs} = \hat{U}_{\phi}^{r}\hat{U}_{\phi}^{s}$) $\hat{H}_{int}^{rs}(t) = \int d^3 \mathbf{x} \, \hat{\phi}(\mathbf{x}) \mu^{rs}(t, \mathbf{x})$ $\frac{\mathrm{d}}{\mathrm{d}t}\hat{U}_{\phi}^{rs}(t) = -i\hat{H}^{rs}(t)\hat{U}_{\phi}^{rs}(t)$ $\langle \psi_B^s(t) | \hat{\mu}_B(\mathbf{x}) | \psi_B^s(t) \rangle$

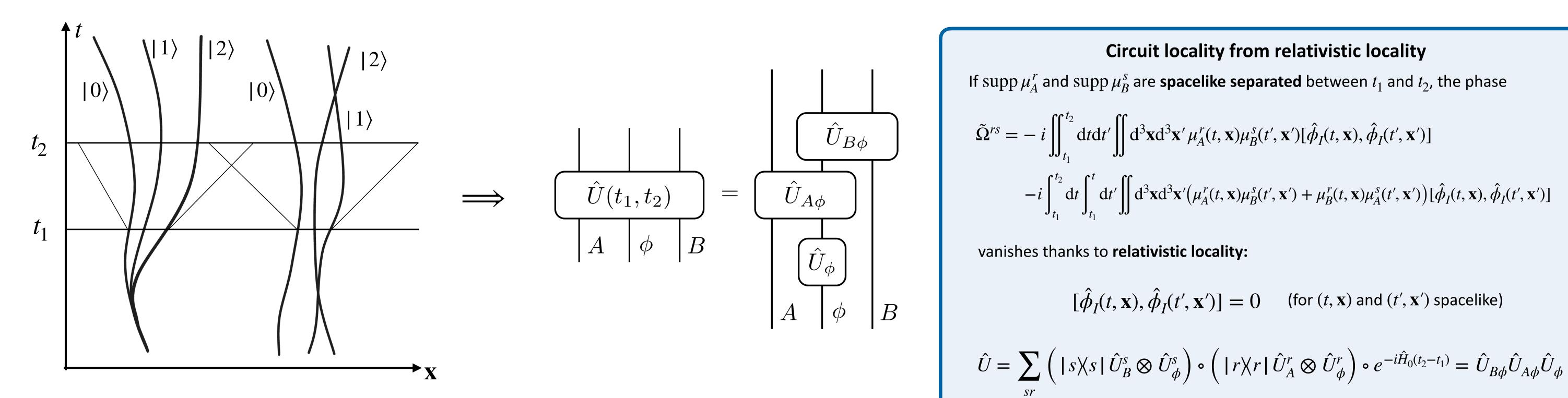
kinetic field termlocal interaction
$$\hat{H}_0 = \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \omega_{\mathbf{k}} \hat{a}^{\dagger}_{\mathbf{k}} \hat{a}_{\mathbf{k}}$$
 $\hat{H}_{\mathrm{int}} = \int \mathrm{d}^3 \mathbf{x} \, \hat{\phi}(\mathbf{x}) \left(\hat{\mu}_A(\mathbf{x}) + \hat{\mu}_B(\mathbf{x}) \right)$ $\omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$ $\hat{\mu}_A(\mathbf{x}) = \mu(\mathbf{x} - \hat{\mathbf{x}}_A)$ $\omega_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$ quantum-controlled dynamics $\hat{H}_A(t) = \sum_r |r \setminus \langle r| \otimes \hat{H}_A^r(t)$ $\hat{H}_B(t) = \sum_s |s \setminus \langle s| \otimes \hat{H}_B^s(t)$

exact solution via Magnus expansion and BHC formula

$$\hat{U}_{\phi}^{rs}(t_1, t_2) = e^{i\tilde{\Omega}^{rs}}\hat{D}[\mu_A^r]\hat{D}[\mu_B^s]e^{-i\hat{H}_0(t_2-t_1)}$$
a big and scary
phase
(ultimately responsible for
entanglement mediation)

$$\hat{U}_{\phi}^{rs}(t_1, t_2) = e^{i\tilde{\Omega}^{rs}}\hat{D}[\mu_A^r]\hat{D}[\mu_B^s]e^{-i\hat{H}_0(t_2-t_1)}$$

$$\hat{D}_{\phi}^{rs}(t_1, t_2) = e^{i\tilde{\Omega}^{rs}}\hat{D}[\mu_A^r]\hat{D}[\mu_B^s]e^{-i\hat{H}_0(t_2-t_1)}$$



quantum-controlled superposition of localised states + spacelike separation \implies circuit-local evolution

Quantum gravity no-go theorems

Theory-independent results about **gravity mediated entanglement** [1,2,3] and reversible gravitational interaction [4] assume **locality** in the **circuit** sense, not relativistic sense. What are these theorems telling us if QFT does not display this kind of circuit locality?

[1] S. Bose, A. Mazumdar, GW. Morley, et. al., A Spin Entanglement Witness for Quantum Gravity <u>arXiv:1707.06050</u>
[2] C. Marletto, V. Vedral, Witnessing non-classicality beyond quantum theory <u>arXiv:2003.07974</u>
[3] T. Galley, F. Giacomini, J. Selby, A no-go theorem on the nature of the gravitational field [...] <u>arXiv:2012.01441</u>
[4] T. Galley, F. Giacomini, J. Selby, Any consistent coupling between classical gravity and [...]<u>arXiv:2301.10261</u>

Possible generalisations

Some immediate next steps:

- quantify the deviation by bounding the effect of the tails, go beyond quantum-controlled semiclassical states of matter (functional analysis)
- generalise to massless gauge fields: the displacement operators will not be defined (IR divergences)
 AQFT approach (in the works)
- generalise to fields interacting with fields?

